Electrical Transport Properties of Glass

  • Koichi ShimakawaEmail author
Part of the Springer Handbooks book series (SHB)


The aim of this chapter is to review the current understanding of various effects, both electronic and ionic transports, in oxide and chalcogenide glasses. Oxide and chalcogenide glasses are classified into an electronic or ionic transport materials depending on the composition of their constituents. Doping of transition metals or alkali atoms into oxide glasses produces electronic or ionic properties in electrical conduction processes. Free carriers (electron and hole) in rigid materials are transported via extended states (band conduction). Localized carriers are transported by a hopping mechanism through localized states. If carrier transport occurs in a deformable lattice, either with strong or weak carrier–phonon interaction, the carrier is accompanied by lattice distortion. This is regarded as a pseudoparticle and is called a polaron, producing a polaronic transport in these media, which is usually discussed for the transition-metal-oxide glasses (s). It is suggested in this article that an alternative explanation for the transport mechanism, instead of the traditional polaron model, is also possible in TMOG. When the conduction, either electronic or ionic, is thermally activated, it is pointed out that the Meyer–Neldel rule () or the compensation law plays the principal role in the transport process in glassy materials. A long-standing puzzle is the mixed alkali effect () in oxide glasses, together with the power-law conductivity behavior. A similar effect, i. e., the mixed cation effect, is also found in chalcogenide glasses. All of these are still matters of debate for electronic and/or ionic transport in glasses and there are many unsolved and important problems on electrical conductions in glasses, which will be finally summarized. Although the principal concern is with physics involved in electrical transport in glasses, nevertheless it should be mentioned at this juncture that electrical transport phenomena also have many technological ramifications.



The author would like to thank Professors K. Tanaka and T. Wagner, V. Zima, and M. Frumar for fruitful discussion on glasssciences.


  1. M.D. Ingram: Electrical properties of glasses. In: Material Science and Technology, Vol. 9, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (Wiley, Weinheim 1991) pp. 715–750Google Scholar
  2. N.F. Mott, E.A. Davis: Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon, Oxford 1979)Google Scholar
  3. D. Emin: Phonon-assisted transition rate I. Optical-phonon-assisted hopping in solids, Adv. Phys. 24, 305–348 (1975)CrossRefGoogle Scholar
  4. D. Emin: Generalized adiabatic polaron hopping: Meyer–Neldel compensation and Poole–Frenkel behaviors, Phys. Rev. Lett. 100, 166602-4 (2008)CrossRefGoogle Scholar
  5. N.F. Mott: Conduction in Non-Crystalline Materials, 2nd edn. (Clarendon, Oxford 1993)Google Scholar
  6. E. Abraham, P.W. Anderson, D.C. Liciardello, T.V. Ramakrishnan: Scaling theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42, 673–676 (1979)CrossRefGoogle Scholar
  7. G. Hertel, D.J. Bishop, E.G. Spensor, J.M. Royel, D.C. Dynes: Tunneling and transport measurements at the metal-insulator transition of amorphous Nb:Si, Phys. Rev. Lett. 50, 743–746 (1983)CrossRefGoogle Scholar
  8. T.F. Rosenbaum, K. Andres, G.A. Thomas, R.N. Bhatt: Sharp metal-insulator transition in a random solid, Phys. Rev. Lett. 43, 1723–1725 (1980)CrossRefGoogle Scholar
  9. S.R. Elliott: Physics of Amorphous Materials, 2nd edn. (Longman Scientific and Technical, Harlow 1990)Google Scholar
  10. N.F. Mott: Conduction in non-crystalline materials, Philos. Mag. 19, 835–852 (1969)CrossRefGoogle Scholar
  11. K. Shimakawa, K. Miyake: Multiphonon tunneling conduction of localized \(\pi\) electron in amorphous carbon films, Phys. Rev. Lett. 61, 994–996 (1988)CrossRefGoogle Scholar
  12. M. Pollak, T.H. Geballe: Low-frequency conductivity due to hopping processes in silicon, Phys. Rev. 122, 1742–1753 (1961)CrossRefGoogle Scholar
  13. A.R. Long: Frequency-dependent loss in amorphous semiconductors, Adv. Phys. 31, 553–637 (1982)CrossRefGoogle Scholar
  14. S.R. Elliott: A.c. conduction in amorphous chalcogenide and pnictide semiconductors, Adv. Phys. 36, 135–217 (1987)CrossRefGoogle Scholar
  15. H. Scher, M.F. Shlesinger, J.T. Bendler: Time-scale invariance in transport and relaxation, Phys. Today 44, 26–32 (1991)CrossRefGoogle Scholar
  16. J.C. Dyre: The random free-energy barrier model for ac conduction in disordered solids, J. Appl. Phys. 64, 2456–2468 (1988)CrossRefGoogle Scholar
  17. J.C. Dyre: Universal low-temperature ac conductivity of macroscopically disordered nonmetals, Phys. Rev. B 48, 12511–12516 (1993)CrossRefGoogle Scholar
  18. T. Holstein: Studies of polaron motion: Part II, Ann. Phys. 8, 343–389 (1959)CrossRefGoogle Scholar
  19. T. Holstein: Sign of the hall coefficient in hopping-type charge transport, Philos. Mag. 27, 225–233 (1973)CrossRefGoogle Scholar
  20. C.H. Seager, D. Emin, R.K. Quinn: Electrical transport and structural properties of bulk As-Te-I, As-Te-Ge, and As-Te chalcogenide glasses, Phys. Rev. B 8, 4746–4760 (1973)CrossRefGoogle Scholar
  21. M. Sayer, A. Mansingh: Transport properties of semiconducting phosphate glasses, Phys. Rev. B 6, 4629–4642 (1972)CrossRefGoogle Scholar
  22. K. Shimakawa: On the mechanism of dc and ac transport in transition metal oxide glasses, Philos. Mag. B 60, 377–389 (1989)CrossRefGoogle Scholar
  23. E. Gorham-Bergeron, D. Emin: Phonon-assisted hopping due to interaction with both acoustical and optical phonons, Phys. Rev. B 15, 3667–3680 (1977)CrossRefGoogle Scholar
  24. K. Shimakawa, K. Miyake: Hopping transport of localized \(\pi\) electrons in amorphous carbon films, Phys. Rev. B 39, 7578–7584 (1989)CrossRefGoogle Scholar
  25. B. Roling, C. Martiny, S. Bruckner: Ion transport in glass: Influence of glassy structure on spatial extent of nonrandom ion hopping, Phys. Rev. B 63, 214203–214209 (2001)CrossRefGoogle Scholar
  26. J.C. Dyre, P. Maass, B. Roling, D.L. Sidebottom: Fundamental questions relating to ion conduction in disordered solids, Rep. Prog. Phys. 72, 046501–046515 (2009)CrossRefGoogle Scholar
  27. A. Yelon, B. Movaghar, R.S. Crandal: Multi-excitation entropy: Its role in thermodynamics and kinetics, Rep. Prog. Phys. 69, 1145–1194 (2006)CrossRefGoogle Scholar
  28. T.B. Schroder, J.C. Dyre: Ac hopping conduction at extreme disorder takes place on the percolating cluster, Phys. Rev. Lett. 101, 025901–025904 (2008)CrossRefGoogle Scholar
  29. A. Hunt: Statistical and percolation effects on ionic conduction in amorphous systems, J. Non-Cryst. Solids 175, 59–70 (1994)CrossRefGoogle Scholar
  30. A. Bunde, M.D. Ingram, P. Maass: The dynamic structure model for ion transport in glasses, J. Non-Cryst. Solids 172–174, 1222–1236 (1994)CrossRefGoogle Scholar
  31. A. Bunde, K. Funke, M.D. Ingram: Ionic glasses: History and challenges, Solid State Ion 105, 1–13 (1998)CrossRefGoogle Scholar
  32. E. Bychkov, V. Tsegelnik, Y. Vlasov, A. Pradel, M. Ribes: Percolation transition in Ag-doped germanium chalcogenide-based glasses: Conductivity and silver diffusion results, J. Non-Cryst. Solids 208, 1–20 (1996)CrossRefGoogle Scholar
  33. E. Bychkov: Tracer diffusion studies of ion-conducting chalcogenide glasses, Solid State Ion 136/137, 1111–1118 (2000)CrossRefGoogle Scholar
  34. E. Bychkov: Superionic and ion-conducting chalcogenide glasses: Transport regimes and structural features, Solid State Ion 180, 510–516 (2009)CrossRefGoogle Scholar
  35. K. Shimakawa, T. Wagner: Origin of power-law composition dependence in ionic transport glasses, J. Appl. Phys. 113, 143701–143705 (2013)CrossRefGoogle Scholar
  36. K. Shimakawa, M. Aniya: Dynamics of atomic diffusion in condensed matter: Origin of the Meyer–Neldel compensation law, Monatsh. Chem. 144, 67–71 (2013)CrossRefGoogle Scholar
  37. K. Tanaka, K. Shimakawa: Amorphous Chalcogenide Semiconductors and Related Materials (Springer, New York 2011)CrossRefGoogle Scholar
  38. K. Shimakawa, F. Abdel-Wahab: The Meyer–Neldel rule in chalcogenide glasses, Appl. Phys. Lett. 70, 652–654 (1997)CrossRefGoogle Scholar
  39. H. Overhof, P. Thomas: Electronic Transport in Hydrogenated Amorphous Semiconductors (Springer, Berlin 1989)CrossRefGoogle Scholar
  40. P. Nagel: Electronic transport in amorphous semiconductors. In: Amorphous Semiconductors, ed. by M.H. Brodsky (Springer, New York 1979) pp. 113–158CrossRefGoogle Scholar
  41. J. Singh, K. Shimakawa: Advances in Amorphous Semiconductors (Taylor Francis, New York 2003)CrossRefGoogle Scholar
  42. H. Okamoto, K. Hattori, H. Hamakawa: Hall effect near the mobility edge, J. Non-Cryst. Solids 164–166, 445–448 (1993)CrossRefGoogle Scholar
  43. S.R. Elliott: A theory of a.c. conduction in chalcogenide glasses, Philos. Mag. 36, 1291–1304 (1977)CrossRefGoogle Scholar
  44. E.A. Davis: States in the gap and defects in amorphous semiconductors. In: Amorphous Semiconductors, ed. by M.H. Brodsky (Springer, New York 1979) pp. 41–72CrossRefGoogle Scholar
  45. A. Ganjoo, K. Shimakawa: Estimation of density of charged defects in amorphous chalcogenides from a.c. conductivity: Random-walk approach for bipolarons based on correlated barrier hopping, Philos. Mag. Lett. 70, 287–291 (1994)CrossRefGoogle Scholar
  46. N. Tohge, T. Minami, Y. Yamamoto, M. Tanaka: Electrical and optical properties of n-type semiconducting chalcogenide glasses in the system Ge-Bi-Se, J. Appl. Phys. 51, 108–1053 (1980)CrossRefGoogle Scholar
  47. G. Belev, S.O. Kasap: Reduction of the dark current in stabilized a-Se based x-ray detectors, J. Non-Cryst. Solids 352, 1616–1620 (2006)CrossRefGoogle Scholar
  48. M.A. Hughes, Y. Fedorenko, B. Gholipour, J. Yao, T.-H. Lee, R.M. Gwilliam, P.K. Homewood, S. Hinder, D.W. Hewak, S.R. Elliott, R.J. Curry: n-type chalcogenides by ion implantation, Nat. Commun. (2016), Scholar
  49. M. Wuttig, N. Yamada: Phase-change materials for rewriteable data storage, Nat. Mater. 6, 824–832 (2007)CrossRefGoogle Scholar
  50. D.S. Patil, K. Shimakawa, V. Zima, J. Macak, T. Wagner: Evaluation of impedance spectra of ionic-transport materials by a random-walk approach considering electrode and bulk response, J. Appl. Phys. 113, 143705–143705 (2013)CrossRefGoogle Scholar
  51. D.S. Patil, K. Shimakawa, V. Zima, T. Wagner: Quantitative impedance analysis of solid ionic conductors: Effects of electrode polarization, J. Appl. Phys. 115, 143707–143706 (2014)CrossRefGoogle Scholar
  52. J.R. Macdonald: Theory of ac space charge polarization effects in photoconductors, semiconductors, and electrolytes, Phys. Rev. 92, 4–17 (1953)CrossRefGoogle Scholar
  53. J.R. Macdonald: Utility and importance of Poisson–Nernst–Planck immitance-spectroscopy fitting models, J. Phys. Chem. C 117(45), 23433–23450 (2013)CrossRefGoogle Scholar
  54. J.R. Macdonald: Addendum to “Fundamental questions relating to ion conduction in disordered solids”, J. Appl. Phys. 107, 101101–101109 (2010)CrossRefGoogle Scholar
  55. Y. Miyamoto, M. Itoh, K. Tanaka: Mobility of Ag ions in Ag-As-S glasses, Solid State Commun. 92, 895–898 (1994)CrossRefGoogle Scholar
  56. K. Tanaka, Y. Miyamoto, M. Itoh, E. Bychkov: Ionic conduction in glasses, Phys. Status Solidi (a) 173, 317–322 (1999)CrossRefGoogle Scholar
  57. K. Tanaka, Y. Miyamoto: Ionic conductivities in crystalline, glassy, and liquid AgAsS2, Solid State Ion. 269, 106–109 (2015)CrossRefGoogle Scholar
  58. M. Frumar, T. Wagner: Ag doped chalcogenide glasses and their applications, Curr. Opin. Solid State Mater. Sci. 7, 117–123 (2003)CrossRefGoogle Scholar
  59. M. Mitokova, Y. Sakaguchi, D. Tenne, S. Bhagat, T.L. Alford: Structural details of Ge-rich and silver-doped chalcogenide glasses for nanoionics nonvolatile memory, Phys. Status Solidi (a) 207, 621–626 (2010)CrossRefGoogle Scholar
  60. C. Rau, P. Armand, A. Pradel, A. Varsamis, E.I. Kamitosos, D. Granier, E. Ibanez, E. Philippot: Mixed cation effect in chalcogenide glasses Rb2S-Ag2S-GeS2, Phys. Rev. B 63, 184204–184209 (2001)CrossRefGoogle Scholar
  61. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature 432, 488–492 (2004)CrossRefGoogle Scholar
  62. H. Hosono: Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application, J. Non-Cryst. Solids 352, 851–858 (2006)CrossRefGoogle Scholar
  63. T. Kamiya, K. Nomura, H. Hosono: Present status of amorphous In-Ga-Zn-O thin-film transistors, Sci. Technol. Adv. Mater. 11, 044305–044323 (2010)CrossRefGoogle Scholar
  64. H. Sakata, K. Sega, B.K. Chaudhuri: Multiphonon tunneling conduction in vanadium-cobalt-tellurite glasses, Phys. Rev. B 60, 3230–3236 (1999)CrossRefGoogle Scholar
  65. P. Maass, A. Bunde, M.D. Ingram: Ion transport anomalies in glasses, Phys. Rev. Lett. 68, 3064–3067 (1992)CrossRefGoogle Scholar
  66. D.E. Day: Mixed alkali glasses, J. Non-Cryst. Solids 21, 343–372 (1976)CrossRefGoogle Scholar
  67. J.A. Rawlands, S.O. Kasap: Amorphous semiconductors usher in digital x-ray imaging, Phys. Today 50, 24–31 (1997)CrossRefGoogle Scholar
  68. K. Tanioka: The ultrasensitive TV pickup tube from conception to recent development, J. Mater. Sci. 18, S321–325 (2007)Google Scholar
  69. O. Rubel, A. Potvin, D. Laughton: Generalized lucky-drift model for impact ionization in semiconductors with disorder, J. Phys. 23, 055802–055807 (2011)Google Scholar
  70. K. Tanka: Avalanche breakdown in amorphous selenium and related materials: Brief review, critique, and proposal, J. Optolectron. Adv. Mater. 16, 243–251 (2014)Google Scholar
  71. M. Terao, T. Morioka, T. Ohta: Electrical phase-change memory: Fundamentals and state of the art, Jpn. J. Appl. Phys. 48, 080001–080014 (2009)CrossRefGoogle Scholar
  72. S. Raoux, F. Xiong, M. Wuttig, E. Pop: Phase change materials and phase change memory, Mater. Res. Soc. 39, 703–710 (2014)CrossRefGoogle Scholar
  73. M. Suri, O. Bichler, D. Querlioz, B. Traor, O. Cueto, L. Pemiola, V. Sousa, D. Vuillaume, C. Gamrat, B. DeSalvo: Physical aspect of low power synapses based on phase change memory devices, J. Appl. Phys. 112, 054904–054910 (2012)CrossRefGoogle Scholar
  74. I.V. Karpov, M. Mitra, D. Kau, G. Spandini, Y. Kryukov, V.G. Karpov: Fundamental drift of parameters in chalcogenide phase change memory, J. Appl. Phys. 102, 124503–124506 (2007)CrossRefGoogle Scholar
  75. D. Ielmini, A.L. Lacaita, D. Mantegazza: Recovery and drift dynamics of resistance and threshold voltages in phase-change memories, IEEE Trans. Electron Devices 54, 308–314 (2009)CrossRefGoogle Scholar
  76. M. Mitra, Y. Jung, D.S. Gianola, R. Agarwal: Extremely low drift of resistance and threshold voltage in amorphous phase change nanowire devices, Appl. Phys. Lett. 96, 222111–222113 (2010)CrossRefGoogle Scholar
  77. A.F. Ioffe, A.R. Regel: Non-crystalline, amorphous and liquid electronic semiconductors, Prog. Semicond. 4, 237 (1960)Google Scholar
  78. A. Kawabata: A self-consistent treatment of Anderson localization, Solid State Commun. 38, 823–825 (1981)CrossRefGoogle Scholar
  79. Z. Ovadyahu: Some finite temperature aspects of the Anderson transition, J. Phys. C 19(26), 5187–5214 (1986)Google Scholar
  80. A. Mobius: The metal semiconductor transition in three-dimensional disordered systems – reanalysis of recent experiments for and against minimum metallic conductivity, J. Phys. C 18, 4639–4670 (1989)CrossRefGoogle Scholar
  81. M.A. Howson: Incipient localization and electron-electron correlation effects in metallic glass alloys, J. Phys. F 14, L25–32 (1984)CrossRefGoogle Scholar
  82. R.W. Cochrane, J.O. Strom-Olsen: Scaling behavior in amorphous and disordered metals, Phys. Rev. B 29, R1088–1090 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center of Innovative Photovoltaic SystemsGifu UniversityGifuJapan

Personalised recommendations