Advertisement

Arbres binaires de recherche

  • Brigitte Chauvin
  • Julien Clément
  • Danièle Gardy
Part of the Mathématiques et Applications book series (MATHAPPLIC, volume 83)

Abstract

Les arbres binaires de recherche (en abrégé abr) ont été introduits dans la section  1.2.5, et l’aléa sur ces arbres dans la section  2.2.3.

References

  1. 1.
    G. Adel’son-Vel’skii, E. Landis, An algorithm for organisation of information. Dokl. Akad. Nauk SSSR 146, 263–266 (1962). Traduction anglaise : Soviet Math. Dokl. 3, 1259–1263Google Scholar
  2. 8.
    C.R. Aragon, R.G. Seidel, Randomized search trees. In 30th Annual Symposium on Foundations of Computer Science (1989), pp. 540–545Google Scholar
  3. 9.
    C.R. Aragon, R.G. Seidel, Randomized search trees. Algorithmica 16(4), 464–497 (1996)MathSciNetCrossRefGoogle Scholar
  4. 15.
    P. Barbe, M. Ledoux, Probabilité. Collection : enseignement SUP-Maths (EDP Sciences, Les Ulis, 2007)Google Scholar
  5. 22.
    J. Bertoin, Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 2006)Google Scholar
  6. 24.
    J. Biggins, Chernoff’s theorem in the branching random walk. J. Appl. Probab. 14, 630–636 (1977)MathSciNetCrossRefGoogle Scholar
  7. 27.
    J.D. Biggins, How fast does a general branching random walk spread? in Classical and Modern Branching Processes. The IMA Volumes in Mathematics and Its Applications, vol. 84, ed. by K.B. Athreya, P. Jagers (Springer, New York, 1997), pp. 19–39Google Scholar
  8. 31.
    N. Broutin, L. Devroye, E. McLeish, M. De la Salle, The height of increasing trees. Random Struct. Algoritm. 32, 494–518 (2008)MathSciNetCrossRefGoogle Scholar
  9. 37.
    B. Chauvin, M. Drmota, J. Jabbour-Hattab, The profile of binary search trees. Ann. Appl. Probab. 11, 1042–1062 (2001)MathSciNetCrossRefGoogle Scholar
  10. 39.
    B. Chauvin, T. Klein, J.-F. Marckert, A. Rouault, Martingales and profile of binary search trees. Electron. J. Probab. 10, 420–435 (2005)MathSciNetCrossRefGoogle Scholar
  11. 50.
    T. Cormen, C. Leiserson, R. Rivest, Introduction à l’algorithmique (Dunod, Paris, 2002)Google Scholar
  12. 54.
    A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, 2nd edn. (Springer, Berlin, 1998)CrossRefGoogle Scholar
  13. 56.
    L. Devroye, Branching processes in the analysis of the height of trees. Acta Inform. 24, 277–298 (1987)MathSciNetCrossRefGoogle Scholar
  14. 62.
    L. Devroye, B. Reed, On the variance of the height of random binary search trees. SIAM J. Comput. 24, 1157–1162 (1995)MathSciNetCrossRefGoogle Scholar
  15. 67.
    M. Drmota, The variance of the height of binary search trees. Theor. Comput. Sci. 270, 913–919 (2002)MathSciNetCrossRefGoogle Scholar
  16. 68.
    M. Drmota, Random Trees. An Interplay between Combinatorics and Probabilities (Springer, Berlin, 2008)Google Scholar
  17. 71.
    R. Dudley, Real Analysis and Probability (Cambridge University Press, Cambridge, 2002)CrossRefGoogle Scholar
  18. 76.
    J. Fill, S. Janson, Smoothness and decay properties of the limiting quicksort density function, in Mathematics and Computer Science. Trends in Mathematics (Birkhäuser, Basel, 2000), pp. 53–64CrossRefGoogle Scholar
  19. 112.
    M. Fuchs, H. Hwang, R. Neininger, Profiles of random trees: limit theorems for random recursive trees and binary search trees. Algorithmica 46, 367–407 (2006)MathSciNetCrossRefGoogle Scholar
  20. 134.
    Y. Hu, Z. Shi, Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37(2), 742–789 (2009)MathSciNetCrossRefGoogle Scholar
  21. 139.
    J. Jabbour-Hattab, Martingales and large deviations for binary search trees. Random Struct. Algoritm. 19, 112–127 (2001)MathSciNetCrossRefGoogle Scholar
  22. 140.
    J. Jabbour-Hattab, Une approche probabiliste du profil des arbres binaires de recherche. PhD thesis, Université de Versailles, 2001. http://tinyurl.com/theseJabbourHattab
  23. 169.
    W.C. Lynch, More combinatorial properties of certain trees. Comput. J. 7(4), 299–302 (1965)MathSciNetCrossRefGoogle Scholar
  24. 177.
    P. Major, On the invariance principle for sums of independent identically distributed random variables. J. Multivar. Anal. 8, 487–517 (1978)MathSciNetCrossRefGoogle Scholar
  25. 179.
    C. Martínez, S. Roura, Randomized binary search trees. J. ACM 45(2), 288–323 (1998)MathSciNetCrossRefGoogle Scholar
  26. 192.
    R. Neininger, L. Rüschendorf, A general limit theorem for recursive algorithms and combinatorial structures. Ann. Appl. Probab. 14, 378–418 (2004)MathSciNetCrossRefGoogle Scholar
  27. 202.
    W. Panny, Deletions in random binary search trees: a story of errors. J. Stat. Plann. Infer. 140(8), 2335–2345 (2010)MathSciNetCrossRefGoogle Scholar
  28. 207.
    B. Pittel, On growing random binary trees. J. Math. Anal. Appl. 103(2), 461–480 (1984)MathSciNetCrossRefGoogle Scholar
  29. 209.
    B. Pittel, Note on the heights of random recursive trees and random m-ary search trees. Random Struct. Algoritm. 5(2), 337–347 (1994)MathSciNetCrossRefGoogle Scholar
  30. 218.
    B. Reed, The height of a random binary search tree. J. ACM 50(3), 306–332 (2003)MathSciNetCrossRefGoogle Scholar
  31. 219.
    M. Régnier, A limiting distribution for quicksort. RAIRO Theor. Inf. Appl. 23, 335–343 (1989)MathSciNetCrossRefGoogle Scholar
  32. 223.
    M. Roberts, Almost sure asymptotics for the random binary search tree, in DMTCS Proceedings, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA’10) (2010)Google Scholar
  33. 224.
    U. Rösler, A limit theorem for quicksort. Theor. Inf. Appl. 25(1), 85–100 (1991)MathSciNetCrossRefGoogle Scholar
  34. 225.
    U. Rösler, L. Rüschendorf, The contraction method for recursive algorithms. Algorithmica 29(1–2), 3–33 (2001)MathSciNetCrossRefGoogle Scholar
  35. 231.
    R. Sedgewick, Algorithms in C: Fundamentals, Data Structures, Sorting, Searching, 3rd edn. (Addison–Wesley, Reading, 1988)zbMATHGoogle Scholar
  36. 232.
    R. Sedgewick, P. Flajolet, Introduction to the Analysis of Algorithms (Addison-Wesley, Reading, 1996)zbMATHGoogle Scholar
  37. 235.
    B.W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman and Hall, London, 1986)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Brigitte Chauvin
    • 1
  • Julien Clément
    • 2
  • Danièle Gardy
    • 3
  1. 1.Laboratoire de MathématiquesUniversité Versailles, Saint-Quentin-en-YvelinesVersailles CedexFrance
  2. 2.GREYC, CNRS UMR 6072Normandie UniversitéCaen CedexFrance
  3. 3.Laboratoire DAVIDUniversité Versailles, Saint-Quentin-en-YvelinesVersailles CedexFrance

Personalised recommendations