Approche probabiliste

  • Brigitte Chauvin
  • Julien Clément
  • Danièle Gardy
Part of the Mathématiques et Applications book series (MATHAPPLIC, volume 83)


Dans ce chapitre, comme à la section  2.1.3, un arbre pousse de manière aléatoire, parce que chaque nœud a un nombre aléatoire de descendants, de moyenne m.


  1. 3.
    D. Aldous, The continuum random tree. i. Ann. Probab. 19(1), 1–28 (1991)MathSciNetCrossRefGoogle Scholar
  2. 4.
    D. Aldous, The continuum random tree. ii: an overview, in Stochastic Analysis, ed. by M. Barlow, N.H. Bingham (Cambridge University Press, Cambridge, 1991), pp. 23–70CrossRefGoogle Scholar
  3. 5.
    D. Aldous, The continuum random tree. iii. Ann. Probab. 21(1), 248–289 (1993)MathSciNetCrossRefGoogle Scholar
  4. 10.
    S. Asmussen, H. Hering, Branching Processes (Birkhäuser, Basel, 1983)CrossRefGoogle Scholar
  5. 12.
    K. Athreya, P. Ney, Branching Processes (Springer, Berlin, 1972)CrossRefGoogle Scholar
  6. 23.
    P. Biane, J. Pitman, M. Yor, Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. Bull. Am. Math. Soc. 38, 435–465 (2001)MathSciNetCrossRefGoogle Scholar
  7. 25.
    J.D. Biggins, Martingale convergence in the branching random walk. Adv. Appl. Probab. 10, 62–84 (1978)CrossRefGoogle Scholar
  8. 26.
    J.D. Biggins, Uniform convergence of martingales in the branching random walk. Ann. Probab. 20(1), 137–151 (1992)MathSciNetCrossRefGoogle Scholar
  9. 28.
    P. Billingsley, Probability and Measure, 3rd edn. Wiley Series in Probability and Mathematical Statistics (Wiley, New York, 1995). A Wiley-Interscience Publication.Google Scholar
  10. 35.
    P. Chassaing, J.-F. Marckert, Parking functions, empirical processes and the width of rooted labeled trees. Electron. J. Comb. 8, R14 (2001)MathSciNetzbMATHGoogle Scholar
  11. 68.
    M. Drmota, Random Trees. An Interplay between Combinatorics and Probabilities (Springer, Berlin, 2008)Google Scholar
  12. 69.
    M. Drmota, B. Gittenberger, On the profile of random trees. Random Struct. Algoritm. 10:4, 421–451 (1997)MathSciNetCrossRefGoogle Scholar
  13. 70.
    M. Drmota, B. Gittenberger, The width of Galton-Watson trees conditioned by the size. Discret. Math. Theor. Comput. Sci. 6:2, 387–400 (2004)Google Scholar
  14. 72.
    T. Duquesne, J.-F. Le Gall, Random trees, Levy processes and spatial branching processes. Asterisque, 281 (2002).
  15. 88.
    P. Flajolet, A. Odlyzko, The average height of binary trees and other simple trees. J. Comput. Syst. Sci. 25, 171–213 (1982)MathSciNetCrossRefGoogle Scholar
  16. 89.
    P. Flajolet, A. Odlyzko, Limit distributions for coefficients of iterates of polynomials with applications to combinatorial enumerations. Math. Proc. Camb. Philos. Soc. 96(2), 237–253 (1984)MathSciNetCrossRefGoogle Scholar
  17. 94.
    P. Flajolet, R. Sedgewick, Analytic Combinatorics (Cambridge University Press, Cambridge, 2009)CrossRefGoogle Scholar
  18. 98.
    P. Flajolet, Z. Gao, A. Odlyzko, B. Richmond, The distribution of heights of binary trees and other simple trees. Comb. Probab. Comput. 2, 145–156 (1993)MathSciNetCrossRefGoogle Scholar
  19. 124.
    G. Grimmett, Random labelled trees and their branching networks. J. Aust. Math. Soc. (Ser. A) 30, 229–237 (1980)MathSciNetCrossRefGoogle Scholar
  20. 148.
    S. Janson, Conditioned Galton–Watson trees do not grow, in Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities (2006), pp. 331–334Google Scholar
  21. 149.
    S. Janson, Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation. Probab. Surv. 9, 103–252 (2012)MathSciNetCrossRefGoogle Scholar
  22. 152.
    D. Kennedy, The distribution of the maximum Brownian excursion. J. Appl. Probab. 13, 371–376 (1976)MathSciNetCrossRefGoogle Scholar
  23. 153.
    H. Kesten, Subdiffusive behavior of random walk on a random cluster. Ann. Inst. Henri Poincaré 22(4), 425–487 (1986)MathSciNetzbMATHGoogle Scholar
  24. 159.
    V. Kolchin, Branching processes, random trees, and a generalized scheme of arrangements of particles. Math. Notes 21, 386–394 (1977)CrossRefGoogle Scholar
  25. 160.
    V. Kolchin, Random Mappings (Optimization Software Inc. Publications Division, New York, 1986)zbMATHGoogle Scholar
  26. 170.
    R. Lyons, A simple path to Biggins’ martingale convergence for branching random walk, in Classical and Modern Branching Processes, ed. by K.B. Athreya, P. Jagers. IMA Volumes in Mathematics and Its Applications, vol. 84 (Springer, New York, 1997)CrossRefGoogle Scholar
  27. 171.
    R. Lyons, R. Pemantle, Y. Peres, Conceptual proofs of \(l\log l\) criteria for mean behavior of branching processes. Ann. Probab. 23, 1125–1138 (1995)MathSciNetCrossRefGoogle Scholar
  28. 178.
    J.-F. Marckert, Limit of random walks and of random trees (2009). Cours.
  29. 205.
    Y. Peres, Probability on trees : an introductory climb. Cours Ecole d’été de Saint-Flour 1997. Lecture Notes in Mathematics, vol. 1717 (Springer, Berlin, 1999)Google Scholar
  30. 221.
    D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, 3rd edn. (Springer, Berlin, 1999)CrossRefGoogle Scholar
  31. 243.
    K. Uchiyama, Spatial growth of a branching process of particles living in R d. Ann. Probab. 10(no 4), 896–918 (1982)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Brigitte Chauvin
    • 1
  • Julien Clément
    • 2
  • Danièle Gardy
    • 3
  1. 1.Laboratoire de MathématiquesUniversité Versailles, Saint-Quentin-en-YvelinesVersailles CedexFrance
  2. 2.GREYC, CNRS UMR 6072Normandie UniversitéCaen CedexFrance
  3. 3.Laboratoire DAVIDUniversité Versailles, Saint-Quentin-en-YvelinesVersailles CedexFrance

Personalised recommendations