Advertisement

Approche combinatoire

  • Brigitte Chauvin
  • Julien Clément
  • Danièle Gardy
Part of the Mathématiques et Applications book series (MATHAPPLIC, volume 83)

References

  1. 2.
    A.V. Aho, N.J.A. Sloane, Some doubly exponential sequences. Fibonacci Q. 11, 429–437 (1970)MathSciNetzbMATHGoogle Scholar
  2. 30.
    B. Bollobas, I. Simon, Repeated random insertion into a priority queue. J. Algoritm. 6, 466–477 (1985)MathSciNetCrossRefGoogle Scholar
  3. 64.
    E. Doberkat, Deleting the root of a heap. Acta Inform. 17, 245–265 (1982)MathSciNetCrossRefGoogle Scholar
  4. 65.
    E. Doberkat, An average case analysis of Floyd’s algorithm to construct heaps. Inf. Control 61(2), 114–131 (1984)MathSciNetCrossRefGoogle Scholar
  5. 89.
    P. Flajolet, A. Odlyzko, Limit distributions for coefficients of iterates of polynomials with applications to combinatorial enumerations. Math. Proc. Camb. Philos. Soc. 96(2), 237–253 (1984)MathSciNetCrossRefGoogle Scholar
  6. 90.
    P. Flajolet, A.M. Odlyzko, Singularity analysis of generating functions. SIAM J. Discret. Math. 3(2), 216–240 (1990)MathSciNetCrossRefGoogle Scholar
  7. 94.
    P. Flajolet, R. Sedgewick, Analytic Combinatorics (Cambridge University Press, Cambridge, 2009)CrossRefGoogle Scholar
  8. 95.
    P. Flajolet, J.-M. Steyaert, A complexity calculus for classes of recursive search programs over tree structures, in 22nd Annual Symposium on Foundations of Computer Science, 1981, SFCS’81 (IEEE, Washington, 1981), pp. 386–393Google Scholar
  9. 110.
    A. Frieze, On the random construction of heaps. Inf. Process. Lett. 27, 103–109 (1988)MathSciNetCrossRefGoogle Scholar
  10. 127.
    R. Hayward, C. McDiarmid. Average-case analysis of heap building by repeated insertion. J. Algorithm. 12(1), 126–153 (1991)MathSciNetCrossRefGoogle Scholar
  11. 138.
    H.-K. Hwang, J.-M. Steyaert, On the number of heaps and the cost of heap construction, in Mathematics and Computer Science (2002), pp. 295–310Google Scholar
  12. 154.
    L. Khizder, Some combinatorial properties of dyadic trees. USSR Comput. Math. Math. Phys. (traduction anglaise de Zh. Vychisl. Matem. i Matem. Fiziki) 6(2), 283–290 (1966)CrossRefGoogle Scholar
  13. 156.
    D. Knuth, The Art of Computer Programming, Vol. 3 : Sorting and Searching, 2nd edn. (Addison-Wesley, Redwood City, 1998)Google Scholar
  14. 185.
    A. Meir, J. Moon, On an asymptotic method in enumeration. J. Comb. Theory (A) 51, 77–89 (1989)MathSciNetCrossRefGoogle Scholar
  15. 199.
    A. Odlyzko, Periodic oscillations of coefficients of power series that satisfy functional equations. Adv. Math. 44(2), 180–205 (1982)MathSciNetCrossRefGoogle Scholar
  16. 200.
    On-line encyclopedia of integer sequences. http://oeis.org
  17. 201.
    R. Otter, The number of trees. Ann. Math. 40(3), 583–599 (1948)MathSciNetCrossRefGoogle Scholar
  18. 211.
    G. Pólya, R. Read, Combinatorial enumeration of Groups, Graphs and Chemical Compounds (Springer, New York, 1987)CrossRefGoogle Scholar
  19. 220.
    E. Reingold, A note on 3–2 trees. Fibonacci Q. 151–157 (1979)Google Scholar
  20. 240.
    L. Takács, On the total height of random rooted binary trees. J. Comb. Theory (B) 61, 155–166 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Brigitte Chauvin
    • 1
  • Julien Clément
    • 2
  • Danièle Gardy
    • 3
  1. 1.Laboratoire de MathématiquesUniversité Versailles Saint-Quentin-en-YvelinesVersailles CedexFrance
  2. 2.GREYC, CNRS UMR 6072Normandie UniversitéCaen CedexFrance
  3. 3.Laboratoire DAVIDUniversité Versailles Saint-Quentin-en-YvelinesVersailles CedexFrance

Personalised recommendations