Advertisement

Arbres, algorithmes et données

  • Brigitte Chauvin
  • Julien Clément
  • Danièle Gardy
Part of the Mathématiques et Applications book series (MATHAPPLIC, volume 83)

Abstract

Ce chapitre paraîtra peut-être moins formalisé que d’autres ; cela nous a semblé nécessaire pour aller vers des préoccupations pratiques algorithmiques.

References

  1. 6.
    A. Apostolico, The myriad virtues of subword trees, in Combinatorial Algorithms on Words, ed. by A. Apostolico, Z. Galil. NATO Advanced Science Institute Series. Series F: Computer and Systems Sciences, vol. 12 (Springer, Berlin, 1985), pp. 85–96Google Scholar
  2. 7.
    A. Apostolico, M. Crochemore, M. Farach-Colton, Z. Galil, S. Muthukrishnan, 40 years of suffix trees. Commun. ACM 59(4), 66–73 (2016)CrossRefGoogle Scholar
  3. 13.
    M. Aumüller, M. Dietzfelbinger, Optimal partitioning for dual pivot quicksort, in Automata, Languages and Programming. LNCS, vol. 7965 (Springer, Berlin, 2013), pp. 33–44CrossRefGoogle Scholar
  4. 14.
    C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy, D. Gouyou-Beauchamps. Generating functions for generating trees. Discret. Math. 246(1–3), 29–55 (2002)MathSciNetCrossRefGoogle Scholar
  5. 16.
    E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani, A methodology for plane tree enumeration. Discret. Math. 180(1–3), 45–64 (1998)MathSciNetCrossRefGoogle Scholar
  6. 17.
    E. Barcucci, A. Del Lungo, E. Pergola, Random generation of trees and other combinatorial objects. Theor. Comput. Sci. 218(2), 219–232 (1999)MathSciNetCrossRefGoogle Scholar
  7. 18.
    T. Bell, I.H. Witten, J.G. Cleary, Modelling for text compression. ACM Comput. Surv. 21(4), 557–591 (1989)CrossRefGoogle Scholar
  8. 21.
    J. Berstel, D. Perrin, C. Reutenauer, Codes and Automata (Encyclopedia of Mathematics and Its Applications), 1st edn. (Cambridge University Press, New York, 2009)Google Scholar
  9. 32.
    J. Capetanakis, Tree algorithms for packet broadcast channels. IEEE Trans. Inf. Theory IT-25:505–515 (1979)MathSciNetCrossRefGoogle Scholar
  10. 38.
    B. Chauvin, P. Flajolet, D. Gardy, B. Gittenberger, And/or trees revisited. Comb. Probab. Comput. 13(4–5), 475–497 (2004)MathSciNetCrossRefGoogle Scholar
  11. 43.
    B. Chauvin, D. Gardy, N. Pouyanne, D.-H. Ton That, B-urns. Lat. Am. J. Probab. Math. Stat. 13, 605–634 (2016)MathSciNetzbMATHGoogle Scholar
  12. 49.
    D. Comer, The ubiquitous B-tree. ACM Comput. Surv. 11(2), 121–137 (1979)MathSciNetCrossRefGoogle Scholar
  13. 50.
    T. Cormen, C. Leiserson, R. Rivest, Introduction à l’algorithmique (Dunod, Paris, 2002)Google Scholar
  14. 51.
    T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction à l’algorithmique (Dunod, Paris, 2010)zbMATHGoogle Scholar
  15. 52.
    M. Crochemore, C. Hancart, T. Lecroq, Algorithms on Strings (Cambridge University Press, New York, 2007). Téléchargeable en Français, http://www-igm.univ-mlv.fr/~mac/CHL/CHL-2011.pdf
  16. 56.
    L. Devroye, Branching processes in the analysis of the height of trees. Acta Inform. 24, 277–298 (1987)MathSciNetCrossRefGoogle Scholar
  17. 57.
    L. Devroye, Applications of the theory of records in the study of random trees. Acta Inform. 26, 123–130 (1988)MathSciNetCrossRefGoogle Scholar
  18. 60.
    L. Devroye, An analysis of random LC tries. Random Struct. Algoritm. 15, 359–375 (2001)MathSciNetCrossRefGoogle Scholar
  19. 66.
    J. Doyle, R. Rivest, Linear expected time of a simple union-find algorithm. Inf. Process. Lett. 5, 146–148 (1976)MathSciNetCrossRefGoogle Scholar
  20. 73.
    M. Durand, P. Flajolet, Loglog counting of large cardinalities, in ESA03, 11th Annual European Symposium on Algorithms, Engineering and Applications Track. Lecture Notes in Computer Science (Springer, Berlin, 2003), pp. 605–617CrossRefGoogle Scholar
  21. 75.
    R. Fagin, J. Nievergelt, N. Pippenger, H.R. Strong, Extendible hashing - a fast access method for dynamic files. ACM Trans. Database Syst. 4(3), 315–344 (1979)CrossRefGoogle Scholar
  22. 77.
    J.A. Fill, S. Janson, The number of bit comparisons used by Quicksort: an average-case analysis. Electron. J. Probab 17(43), 1–22 (2012)MathSciNetzbMATHGoogle Scholar
  23. 78.
    J. Fill, H. Mahmoud, W. Szpankowski, On the distribution for the duration of a randomized leader election algorithm. Ann. Appl. Probab. 6(4), 1260–1283 (1996)MathSciNetCrossRefGoogle Scholar
  24. 79.
    P. Flajolet, On the performance evaluation of extendible hashing and trie searching. Acta Inform. 20, 345–369 (1983)MathSciNetCrossRefGoogle Scholar
  25. 80.
    P. Flajolet, Approximate counting: a detailed analysis. BIT Numer. Math. 25, 113–134 (1985)MathSciNetCrossRefGoogle Scholar
  26. 81.
    P. Flajolet, On adaptive sampling. Computing 43, 391–400 (1990)MathSciNetCrossRefGoogle Scholar
  27. 82.
    P. Flajolet, Counting by coin tossing, in Proceedings of Asian’04, ed. by M. Maher. Number 3321 in Lecture Notes in Computer Science (Springer, Berlin, 2004), pp. 1–12Google Scholar
  28. 85.
    P. Flajolet, P. Jacquet, Analytic models for tree communication protocols, in Flow Control of Congested Networks, ed. by A.R. Odoni, L. Bianco, G. Szegö (Springer, Berlin, 1987), pp. 223–234CrossRefGoogle Scholar
  29. 87.
    P. Flajolet, G. Martin, Probabilistic counting algorithms for data base applications. J. Comput. Syst. Sci. 31(2), 182–209 (1985)MathSciNetCrossRefGoogle Scholar
  30. 104.
    P. Flajolet, E. Fusy, O. Gandouet, F. Meunier, Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm, in DMTCS Proceedings, vol. AH (2007), pp. 127–146Google Scholar
  31. 107.
    H. Fournier, D. Gardy, A. Genitrini, M. Zaionc, Classical and intuitionistic logic are asymptotically identical, in Computer Science Logic, Proceedings of the 21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne, 11–15 September 2007, pp. 177–193Google Scholar
  32. 108.
    H. Fournier, D. Gardy, A. Genitrini, B. Gittenberger, The fraction of large random trees representing a given boolean function in implicational logic. Random Struct. Algoritm. 20(7), 875–887 (2012)zbMATHGoogle Scholar
  33. 111.
    C. Froidevaux, M.-C. Gaudel, M. Soria, Types de données et Algorithmes (McGraw Hill, Paris, 1993)zbMATHGoogle Scholar
  34. 114.
    Z. Galil, G.N. Italiano, Data structures and algorithms for disjoint set union problems. ACM Comput. Surv. 2(3) (1991)CrossRefGoogle Scholar
  35. 115.
    D. Gardy, Random boolean expressions, in DMTCS Proceedings AF (2006), pp. 1–36. Invited paper, Colloquium on Computational Logic and Applications, Chambéry, Juin 2005Google Scholar
  36. 117.
    A. Genitrini, J. Kozik, In the full propositional logic, 5/8 of classical tautologies are intuitionistically valid. Ann. Pure Appl. Logic 163(7), 875–887 (2012)MathSciNetCrossRefGoogle Scholar
  37. 118.
    A. Genitrini, C. Mailler, Generalised and quotient models for random and/or trees and application to satisfiability. Algorithmica 76(4), 1106–1138 (2016)MathSciNetCrossRefGoogle Scholar
  38. 119.
    A. Genitrini, B. Gittenberger, V. Kraus, C. Mailler, Associative and commutative tree representations for boolean functions. Theor. Comput. Sci. 570, 70–101 (2015)MathSciNetCrossRefGoogle Scholar
  39. 126.
    D. Gusfield, Algorithm on Strings, Trees, and Sequences: Computer Science and Computational Biology (Cambridge University Press, New York, 1997)CrossRefGoogle Scholar
  40. 128.
    P. Hennequin, Combinatorial analysis of quicksort algorithm. RAIRO Inform. Théor. Appl. 23(3), 317–333 (1989)MathSciNetCrossRefGoogle Scholar
  41. 129.
    P. Hennequin, Analyse en moyenne d’algorithmes : Tri rapide et arbres de recherche. PhD thesis, École Polytechnique, Palaiseau, 1991, 170 pp.Google Scholar
  42. 131.
    C. Hoare, Quicksort. Comput. J. 10–15 (1962)Google Scholar
  43. 145.
    P. Jacquet, W. Szpankowski, Asymptotic behavior of the Lempel-Ziv parsing scheme and digital search trees. Theor. Comput. Sci. 144(1–2), 161–197 (1995)MathSciNetCrossRefGoogle Scholar
  44. 156.
    D. Knuth, The Art of Computer Programming, Vol. 3 : Sorting and Searching, 2nd edn. (Addison-Wesley, Redwood City, 1998)Google Scholar
  45. 158.
    D. Knuth, A. Schonhage, The expected linearity of a simple equivalence algorithm. Theor. Comput. Sci. 6, 281–315 (1978)MathSciNetCrossRefGoogle Scholar
  46. 162.
    R. Kruse, A. Ryba, Data Structures and Program Design in C++ (Prentice Hall, Upper Saddle River, 2000)Google Scholar
  47. 163.
    P.-Å. Larson, Dynamic hashing. BIT Numer. Math. 18(2), 184–201 (1978)MathSciNetCrossRefGoogle Scholar
  48. 164.
    H. Lefmann, P. Savický. Some typical properties of large and/or boolean formulas. Random Struct. Algoritm. 10(3), 337–351 (1997)MathSciNetCrossRefGoogle Scholar
  49. 165.
    W. Litwin, Virtual hashing: a dynamically changing hashing, in Fourth International Conference on Very Large Data Bases, 13–15 September 1978, West Berlin, ed. by S.B. Yao (IEEE Computer Society, Washington, 1978), pp. 517–523Google Scholar
  50. 167.
    G. Louchard, The asymmetric leader election algorithm: number of survivors near the end of the game. Quaest. Math. (2015)Google Scholar
  51. 168.
    G. Louchard, H. Prodinger, M. Ward, Number of survivors in the presence of a demon. Period. Math. Hung. 64(1), 101–117 (2012)MathSciNetCrossRefGoogle Scholar
  52. 180.
    C. Martínez, S. Roura, Optimal sampling strategies in quicksort and quickselect. SIAM J. Comput. 31(3), 683–705 (2001)MathSciNetCrossRefGoogle Scholar
  53. 181.
    C. Martínez, A. Panholzer, H. Prodinger, On the number of descendants and ascendants in random search trees. Electron. J. Comb. 5(1), R20 (1998)Google Scholar
  54. 182.
    C. Martínez, D. Panario, A. Viola, Adaptive sampling strategies for quickselects. ACM Trans. Algorithms 6(3) (2010)MathSciNetCrossRefGoogle Scholar
  55. 183.
    C. Martínez, M.E. Nebel, S. Wild, Analysis of branch misses in quicksort, in Proceedings of the Twelfth Workshop on Analytic Algorithmics and Combinatorics, ANALCO 2015, San Diego, 4 January 2015, pp. 114–128Google Scholar
  56. 184.
    E.M. McCreight, A space-economical suffix tree construction algorithm. J. ACM 23(2), 262–272 (1976)MathSciNetCrossRefGoogle Scholar
  57. 186.
    H. Mohamed, P. Robert, Dynamic tree algorithm. Ann. Appl. Probab. 20(1), 26–51 (2010)MathSciNetCrossRefGoogle Scholar
  58. 189.
    R. Morris, Counting large numbers of events in small registers. Commun. ACM 21(10), 840–842 (1978)CrossRefGoogle Scholar
  59. 195.
    S. Nilsson, G. Karlsson, Ip-address lookup using lc-tries. IEEE J. Sel. Areas Commun. 17(6), 1083–1092 (1999)CrossRefGoogle Scholar
  60. 203.
    J.B. Paris, A. Vencovská, G.M. Wilmers, A natural prior probability distribution derived from the propositional calculus. Ann. Pure Appl. Logic 70, 243–285 (1994)MathSciNetCrossRefGoogle Scholar
  61. 209.
    B. Pittel, Note on the heights of random recursive trees and random m-ary search trees. Random Struct. Algoritm. 5(2), 337–347 (1994)MathSciNetCrossRefGoogle Scholar
  62. 217.
    H. Prodinger, How to select a loser. Discret. Math. 20, 149–159 (1993)MathSciNetCrossRefGoogle Scholar
  63. 224.
    U. Rösler, A limit theorem for quicksort. Theor. Inf. Appl. 25(1), 85–100 (1991)MathSciNetCrossRefGoogle Scholar
  64. 227.
    D. Salomon, Data Compression: The Complete Reference (Springer, Berlin, 2007). With contributions by G. Motta and D. BryantGoogle Scholar
  65. 228.
    P. Savický, Complexity and probability of some Boolean formulas. Comb. Probab. Comput. 7, 451–463 (1998)MathSciNetCrossRefGoogle Scholar
  66. 229.
    P. Savický, A. Woods, The number of Boolean functions computed by formulas of a given size. Random Struct. Algoritm. 13, 349–382 (1998)MathSciNetCrossRefGoogle Scholar
  67. 231.
    R. Sedgewick, Algorithms in C: Fundamentals, Data Structures, Sorting, Searching, 3rd edn. (Addison–Wesley, Reading, 1988)zbMATHGoogle Scholar
  68. 234.
    R. Seidel, M. Sharir, Top-down analysis of path compression. SIAM J. Comput. 34(3), 515–525 (2005)MathSciNetCrossRefGoogle Scholar
  69. 238.
    M. Sorensen, P. Urzyczyn, Lectures on the Curry-Howard Isomorphism (Elsevier, New York, 1998)zbMATHGoogle Scholar
  70. 241.
    R.E. Tarjan, Efficiency of a good but not linear set union algorithm. J. ACM 22(2), 215–225 (1975)MathSciNetCrossRefGoogle Scholar
  71. 242.
    B. Tsybakov, V. Mikhailov, Free synchronous packet access in a broadcast channel with feedback. Probl. Inf. Transm. 14, 259–280 (1979)Google Scholar
  72. 244.
    E. Ukkonen, On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)MathSciNetCrossRefGoogle Scholar
  73. 246.
    B. Vallée, J. Clément, J.A. Fill, P. Flajolet, The number of symbol comparisons in quicksort and quickselect, in ICALP 2009, ed. by S. Albers et al. Part I, LNCS, vol. 5555 (Springer, Berlin, 2009), pp. 750–763CrossRefGoogle Scholar
  74. 247.
    P. Weiner, Linear pattern matching algorithm, in IEEE 14th Annual Symposium on Switching and Automata Theory (1973), pp. 1–11Google Scholar
  75. 249.
    J. West, Generating trees and the Catalan and Schröder numbers. Discret. Math. 157, 363–374 (1995)CrossRefGoogle Scholar
  76. 252.
    A. Woods, Coloring rules for finite trees, and probabilities of monadic second order sentences. Random Struct. Algoritm. 10, 453–485 (1997)MathSciNetCrossRefGoogle Scholar
  77. 253.
    W. Wu, Packet Forwarding Technologies (Auerbach Publications, New York, 2007)CrossRefGoogle Scholar
  78. 254.
    A. Yao, On random 2–3 trees. Acta Inform. 9, 159–170 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Brigitte Chauvin
    • 1
  • Julien Clément
    • 2
  • Danièle Gardy
    • 3
  1. 1.Laboratoire de MathématiquesUniversité Versailles Saint-Quentin-en-YvelinesVersailles CedexFrance
  2. 2.GREYC, CNRS UMR 6072Normandie UniversitéCaen CedexFrance
  3. 3.Laboratoire DAVIDUniversité Versailles Saint-Quentin-en-YvelinesVersailles CedexFrance

Personalised recommendations