Advertisement

Flutter from Friction in Solids and Structures

  • Davide Bigoni
Chapter
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 586)

Abstract

The theory of flutter instability in structures and solids is presented, starting from the illuminating case of the Ziegler double pendulum, continuing with the Beck and Pflüger columns, and ending with the conditions for flutter in solids, considering in particular nonassociative elastoplastic models for granular and rock-like materials. The role of dissipation, leading to the so-called ‘Ziegler paradox’ is presented in detail. It is explained how to obtain a tangential follower load in a structure by exploiting Coulomb friction and it is shown that structures working in a flutter condition can reach a limit cycle, in which they behave as self-oscillating devices.

Notes

Acknowledgements

Financial support from the ERC advanced grant ERC-2013-ADG-340561-INSTABILITIES is gratefully acknowledged.

References

  1. G.G. Adams, Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction. J. Appl. Mech. 62, 867–872 (1995)Google Scholar
  2. B. Andreotti, L. Bonneau, Booming dune instability. Phys. Rev. Lett. 103, 238001 (2009)Google Scholar
  3. B. Audoly, Y. Pomeau, Elasticity and Geometry (Oxford University Press, Oxford, 2010). ISBN 978-0-1985-0625-6Google Scholar
  4. M. Beck, Die knicklast des einseitig eingespannten, tangential gedrückten stabes. Z. Angew. Math. Phys. 3, 225–228 (1952)Google Scholar
  5. D. Bigoni, Nonlinear Solid Mechanics Bifurcation Theory and Material Instability (Cambridge University Press, Cambridge, 2012)Google Scholar
  6. D. Bigoni, On flutter instability in elastoplastic constitutive models. Int. J. Solids Struct. 32, 3167–3189 (1995)Google Scholar
  7. D. Bigoni, F. Bosi, D. Misseroni, F. Dal Corso, G. Noselli, New Phenomena in Nonlinear Elastic Structures: from Tensile Buckling to Configurational Forces (Springer, Berlin, 2015). ISBN 978-3-7091-1876-4Google Scholar
  8. D. Bigoni, B. Loret, Effects of elastic anisotropy on strain localization and flutter instability in plastic solids. J. Mech. Phys. Solids 47, 1409–1436 (1999)Google Scholar
  9. D. Bigoni, B. Loret, E. Radi, Localization of deformation in plane elastic-plastic solids with anisotropic elasticity. J. Mech. Phys. Solids 48, 1441–1466 (2000)Google Scholar
  10. D. Bigoni, D. Misseroni, G. Noselli, D. Zaccaria, Surprising Instabilities of Simple Elastic Structures (Wiley, New York, 2014), pp. 1–14Google Scholar
  11. D. Bigoni, D. Misseroni, M. Tommasini, O. Kirillov, G. Noselli, Detecting singular weak-dissipation limit for flutter onset in reversible systems. Phys. Rev. E 97, 023003 (2018)Google Scholar
  12. D. Bigoni, G. Noselli, Experimental evidence of flutter and divergence instabilities induced by dry friction. J. Mech. Phys. Solids 59, 2208–2226 (2011)Google Scholar
  13. D. Bigoni, H. Petryk, A note on divergence and flutter instabilities in elastic-plastic materials. Int. J. Solids Struct. 39, 911–926 (2002)Google Scholar
  14. D. Bigoni, J.R. Willis, A Dynamical Interpretation of Flutter Instability (A.A. Balkema, Rotterdam, 1994)Google Scholar
  15. D. Bigoni, D. Zaccaria, On eigenvalues of the acoustic tensor in elastoplasticity. Eur. J. Mech. A/Solids 13, 621–638 (1994)Google Scholar
  16. V.V. Bolotin, Nonconservative Problems of the Theory of Elastic Stability (Pergamon Press, New York, 1963)Google Scholar
  17. O. Bottema, The Routh-Hurwitz condition for the biquadratic equation. Indagationes Mathematicae 18, 403–406 (1956)Google Scholar
  18. R.M. Brannon, Elements of Phenomenological Plasticity: Geometrical Insight, Computational Algorithms, and Topics in Shock Physics (Springer, Berlin, 2007), pp. 225–274Google Scholar
  19. R.M. Brannon, W.J. Drugan, Influence of non-classical elastic-plastic constitutive features on shock wave existence and spectral solutions. J. Mech. Phys. Solids 41, 297–330 (1993)Google Scholar
  20. A. Broman, Introduction to Partial Differential Equations (Dover, New York, 1970)Google Scholar
  21. J. Burghardt, R.M. Brannon, Nonuniqueness and instability of classical formulations of nonassociated plasticity, ii: effect of nontraditional plasticity features on the Sandler-Rubin instability. J. Mech. Mater. Struct. 10, 149–166 (2015)Google Scholar
  22. J.W. Carson, T. Holmes, Silo failures: why do they happen? Task Q. 4, 499–512 (2003)Google Scholar
  23. S. Dagois-Bohy, S. Courrech du Pont, S. Douady, Singing-sand avalanches without dunes. Geophys. Res. Lett. 39(20) (2012)Google Scholar
  24. F. D’Annibale, G. Rosi, A. Luongo, Controlling the limit-cycle of the Ziegler column via a tuned piezoelectric damper. Math. Probl. Eng. 942859 (2015)Google Scholar
  25. J.P. Den Hartog, Forced vibrations with combined coulomb and viscous friction, ASME APM-53 (1931), pp. 107–115Google Scholar
  26. J.P. Den Hartog, Mechanical Vibrations (McGraw-Hill, USA, 1956)Google Scholar
  27. O. Doaré, S. Michelin, Piezoelectric coupling in energy-harvesting fluttering flexible plates: linear stability analysis and conversion efficiency. J. Fluids Struct. 27, 1357–1375 (2011)Google Scholar
  28. I. Elishakoff, Controversy associated with the so-called follower force: critical overview. Appl. Mech. Rev. 58, 117–142 (2005)Google Scholar
  29. A. Gajo, D. Bigoni, D. Muir Wood, Multiple shear band development and related instabilities in granular materials. J. Mech. Phys. Solids 52, 2683–2724 (2004)Google Scholar
  30. K.F. Graff, Wave Motion in Elastic Solids (Ohio State University Press, USA, 1975)Google Scholar
  31. G. Herrmann, Dynamics and stability of mechanical systems with follower forces. Technical report nasa cr-1782 (1971)Google Scholar
  32. G. Herrmann, S. Nemat-Nasser, S.N. Prasad, Models demonstrating instability of nonconservative dynamical systems. Technical report no. 66-4 (1966)Google Scholar
  33. R. Hill, Acceleration waves in solids. J. Mech. Phys. Solids 10, 1–16 (1962)Google Scholar
  34. R.A. Ibrahim, Friction-induced vibration, chatter, squeal, and chaos part i: mechanics of contact and friction. Appl. Mech. Rev. 47, 209–226 (1994a)Google Scholar
  35. R.A. Ibrahim, Friction-induced vibration, chatter, squeal, and chaos part ii: dynamics and modeling. Appl. Mech. Rev. 47, 227–253 (1994b)Google Scholar
  36. A. Jenkins, Self-oscillation. Phys. Rep. 525, 167–222 (2013)Google Scholar
  37. O.N. Kirillov, A theory of the destabilization paradox in non-conservative systems. Acta Mech. 174, 145–166 (2005)Google Scholar
  38. O.N. Kirillov, Nonconservative Stability Problems of Modern Physics (De Gruyter, Germany, 2013)Google Scholar
  39. O.N. Kirillov, F. Verhulst, Paradoxes of dissipation-induced destabilization or who opened whitney’s umbrella? Z. Angew. Math. Mech. 90, 462–488 (2010)Google Scholar
  40. W.T. Koiter, Unrealistic follower forces. J. Sound Vib. 194, 636–638 (1996)Google Scholar
  41. R. Krechetnikov, J.E. Marsden, Dissipation-induced instabilities in finite dimensions. Rev. Mod. Phys. 79, 519–553 (2007)Google Scholar
  42. M. Kröger, M. Neubauer, K. Popp, Experimental investigation on the avoidance of self-excited vibrations. Philos. Trans. R. Soc. A 366, 785–810 (2008)Google Scholar
  43. B. Loret, Does deviation from deviatoric associativity lead to the onset of flutter instability? J. Mech. Phys. Solids 40, 1363–1375 (1992)Google Scholar
  44. B. Loret, J.H. Prevost, O. Harireche, Loss of hyperbolicity in elastic-plastic solids with deviatoric associativity. Eur. J. Mech. A/Solids 9, 225–231 (1990)Google Scholar
  45. B. Loret, F.M.F. Simões, J.A.C. Martins, Flutter Instability and Ill-posedness in Solids and Fluid-saturated Porous Media (Springer, New York, 2000), pp. 109–207Google Scholar
  46. I. Lottati, I. Elishakoff, A new destabilization phenomenon: influence of rotary damping. Ingenieur-Archiv 57, 413–419 (1987)Google Scholar
  47. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity (Cambridge University Press, Cambridge, 1927)Google Scholar
  48. G. Maier, A minimum principle for incremental elastoplasticity with nonassociated flow-laws. J. Mech. Phys. Solids 18, 319–330 (1970)Google Scholar
  49. J. Mandel, Conditions de stabilité et postulat de Drucker (Springer, Berlin, 1966), pp. 58–68Google Scholar
  50. J. Mandel, Ondes plastiques dans un milieu indéfini à trois dimensions. J. de Mécanique 1, 3–30 (1962)Google Scholar
  51. J.A.C. Martins, S. Barbarin, M. Raous, A. Pinto da Costa, Dynamic stability of finite dimensional linearly elastic systems with unilateral contact and coulomb friction. Comput. Method Appl. Mech. Eng. 177, 289–328 (1999)Google Scholar
  52. Z. Mróz, Non-associated flow laws in plasticity. J. de Mechanique 2, 21–42 (1963)Google Scholar
  53. Z. Mróz, On forms of constitutive laws for elastic-plastic solids. Arch. Mech. Stosowanej 18, 1–34 (1966)Google Scholar
  54. B.K. Muite, S.F. Quinn, S. Sundaresan, K.K. Rao, Silo music and silo quake: granular flow-induced vibration. Powder Tech. 145, 190–202 (2004)Google Scholar
  55. M. Neubauer, C.C. Neuber, K. Popp, Control of stick-slip vibrations, in Proceedings of IUTAM Symposium on Vibration Control of Nonlinear Mechanisms and Structures, vol. 145 (Munich, Germany, 2005) pp. 223–232Google Scholar
  56. Q.S. Nguyen, Instability and friction. Comptes Rendus Mécanique 331, 99–112 (2003)Google Scholar
  57. Q.S. Nguyen, Stabilité des structures élastiques (Springer, Berlin, 1995)Google Scholar
  58. M.P. Paidoussis, Fluid-Structure Interactions, vol. 1, 2, 2nd edn. (Elsevier, London, 2014)Google Scholar
  59. A.J. Patitsas, Snow sounds when rubbing or impacting a snow bed. Can. J. Phys. 93, 1302–1309 (2015)Google Scholar
  60. H. Petryk, On stability and symmetry conditions in time-independent plasticity. Arch. Mech. 37, 503–520 (1985)Google Scholar
  61. A. Pflüger, Stabilitätsprobleme der Elastostatik (Springer, Berlin, 1950)Google Scholar
  62. A. Pflüger, Zur stabilität des tangential gedruckten stabes. Z. Angew. Math. Mech. 5(191) (1955)Google Scholar
  63. A. Piccolroaz, D. Bigoni, J.R. Willis, A dynamical interpretation of flutter instability in a continuous medium. J. Mech. Phys. Solids 54, 2391–2417 (2006)Google Scholar
  64. W. Prager, Recent developments in the mathematical theory of plasticity. J. Appl. Phys. 20, 235–241 (1949)Google Scholar
  65. T. Pucik, R.M. Brannon, J. Burghardt, Nonuniqueness and instability of classical formulations of nonassociated plasticity, i: case study. J. Mech. Mater. Struct. 10, 123–148 (2015)Google Scholar
  66. E. Radi, D. Bigoni, A. Tralli, On uniqueness for frictional contact rate problems. J. Mech. Phys. Solids 47, 275–296 (1999)Google Scholar
  67. B. Raniecki, Ordinary Waves in Inviscid Plastic Media (Springer, Wien, 1976)Google Scholar
  68. E.L. Reiss, Column Buckling: An Elementary Example of Bifurcation (W.A. Benjamin Inc, New York, 1969), pp. 1–16Google Scholar
  69. J.R. Rice, The Localization of Plastic Deformation (North-Holland, Amsterdam, 1977), pp. 207–220Google Scholar
  70. J.R. Rice, A.L. Ruina, Stability of steady frictional slipping. J. Appl. Mech. 50, 343–349 (1983)Google Scholar
  71. I. Sandler, D. Rubin, The Consequences of Non-associated Plasticity in Dynamic Problems (Elsevier Science Publishing Co, Amsterdam, 1987), pp. 345–353Google Scholar
  72. F.M.F. Simões, J.A.C. Martins, Instability and ill-posedness in some friction problems. Int. J. Eng. Sci. 36, 1265–1293 (1998)Google Scholar
  73. Y. Sugiyama, K. Katayama, S. Kinoi, Flutter of a cantilevered column under rocket thrust. J. Aerosp. Eng. 8, 9–15 (1995)Google Scholar
  74. Y. Sugiyama, K. Katayama, K. Kiriyama, B.J. Ryu, Experimental verification of dynamic stability of vertical cantilevered columns subjected to a sub-tangential force. J. Sound Vib. 236, 193–207 (2000)Google Scholar
  75. J. Tejchman, G. Gudehus, Silo music and silo-quake experiments and a numerical cosserat approach. Powder Tech. 76, 201–212 (1993)Google Scholar
  76. K. Wilde, J. Tejchman, M. Rucka, M. Niedostatkiewicz, Experimental and theoretical investigations of silo music. Powder Tech. 198, 38–48 (2010)Google Scholar
  77. H. Ziegler, Die stabilitätskriterien der elastomechanik. Ingenieur-Archiv, XX: 49–56 (1952)Google Scholar
  78. H. Ziegler, Linear elastic stability a critical analysis of methods. Z. Angew. Math. Phys. 4, 89–121 (1953)Google Scholar
  79. H. Ziegler, On the concept of elastic stability. Adv. Appl. Mech. 4, 351–403 (1956)Google Scholar
  80. H. Ziegler, Principles of Structural Stability (Birkhäuser, Basel und Stuttgart, 1977)Google Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2019

Authors and Affiliations

  1. 1.Department of Civil, Environmental and Mechanical EngineeringUniversity of TrentoTrentoItaly

Personalised recommendations