Advertisement

E-Zone: A Faster Neighbor Point Query Algorithm for Matching Spacial Objects

  • Xiaobin Ma
  • Zhihui Du
  • Yankui Sun
  • Yuan Bai
  • Suping Wu
  • Andrei Tchernykh
  • Yang Xu
  • Chao Wu
  • Jianyan Wei
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10862)

Abstract

Latest astronomy projects observe the spacial objects with astronomical cameras generating images continuously. To identify transient objects, the position of these objects on the images need to be compared against a reference table on the same portion of the sky, which is a complex search task called cross match. We designed Euclidean-Zone (E-Zone), a method for faster neighbor point queries which allows efficient cross match between spatial catalogs. In this paper, we implemented E-Zone algorithm utilizing euclidean distance between celestial objects with pixel coordinates to avoid the complex mathematical functions in equatorial coordinate system. Meanwhile, we surveyed on the parameters of our model and other system factors to find optimal configures of this algorithm. In addition to the sequential algorithm, we modified the serial program and implemented an OpenMP parallelized version. For serial version, the results of our algorithm achieved a speedup of 2.07 times over using equatorial coordinate system. Also, we achieved 19 ms for sequencial queries and 5 ms for parallel queries for 200,000 objects on a single CPU processor over a 230,520 synthetic reference database.

Keywords

Cross match Zone Parallel OpenMP 

Notes

Acknowledgment

This research is supported in part by the National Key Research and Development Program of China (No. 2016YFB1000602 and 2017YFB0701501), the Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, MOE research center for online education foundation (No. 2016ZD302), and National Natural Science Foundation of China (Nos. 61440057, 61272087, 61363019).

References

  1. 1.
  2. 2.
    Flexible image transport system. https://fits.gsfc.nasa.gov
  3. 3.
  4. 4.
  5. 5.
    Budavari, T., Lee, M.A.: Xmatch: GPU enhanced astronomic catalog cross-matching. Astrophysics Source Code Library (2013)Google Scholar
  6. 6.
    Fishman, G.J., Meegan, C.A.: Gamma-ray bursts. Astron. Astrophys. 33(33), 415–458 (2003)Google Scholar
  7. 7.
    Godet, O., Paul, J., Wei, J.Y., Zhang, S.-N., Atteia, J.-L., Basa, S., Barret, D., Claret, A., Cordier, B., Cuby, J.-G., et al.: The Chinese-French SVOM mission: studying the brightest astronomical explosions. In: Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, vol. 8443, p. 84431O. International Society for Optics and Photonics (2012)Google Scholar
  8. 8.
    Gray, J., Szalay, A.S., Thakar, A.R., Fekete, G., O’Mullane, W., Nietosantisteban, M.A., Heber, G., Rots, A.H.: There goes the neighborhood: relational algebra for spatial data search. Computer Science (2004)Google Scholar
  9. 9.
    Górski, K.M., Hivon, E.: Healpix: hierarchical equal area isolatitude pixelization of a sphere. Astrophysics Source Code Library (2011)Google Scholar
  10. 10.
    Jia, X., Luo, Q.: Multi-assignment single joins for parallel cross-match of astronomic catalogs on heterogeneous clusters. In: International Conference on Scientific and Statistical Database Management, p. 12 (2016)Google Scholar
  11. 11.
    Nietosantisteban, M.A., Thakar, A.R., Szalay, A.S.: Cross-matching very large datasets. Santisteban (2008)Google Scholar
  12. 12.
    Pineau, F.X., Derriere, S., Motch, C., Carrera, F.J., Genova, F., Michel, L., Mingo, B., Mints, A., Gómezmorán, A.N., Rosen, S.R.: Probabilistic multi-catalogue positional cross-match. Astron. Astrophys. 597, A89 (2016)CrossRefGoogle Scholar
  13. 13.
    Riccio, G., Brescia, M., Cavuoti, S., Mercurio, A., Di Giorgio, A.M., Molinari, S.: C3, a command-line catalogue cross-match tool for large astrophysical catalogues. Publications Astron. Soc. Pac. 129(972), 024005 (2016)Google Scholar
  14. 14.
    Szalay, A.S., Gray, J., Fekete, G., Kunszt, P.Z., Kukol, P., Thakar, A.: Indexing the sphere with the hierarchical triangular mesh. Microsoft Research (2007)Google Scholar
  15. 15.
    Wang, S., Zhao, Y., Luo, Q., Wu, C., Yang, X.: Accelerating in-memory cross match of astronomical catalogs. In: IEEE International Conference on E-Science, pp. 326–333 (2013)Google Scholar
  16. 16.
    Zhao, Q., Sun, J., Yu, C., Cui, C., Lv, L., Xiao, J.: A paralleled large-scale astronomical cross-matching function. In: Hua, A., Chang, S.-L. (eds.) ICA3PP 2009. LNCS, vol. 5574, pp. 604–614. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03095-6_57CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Xiaobin Ma
    • 1
  • Zhihui Du
    • 1
  • Yankui Sun
    • 1
  • Yuan Bai
    • 2
  • Suping Wu
    • 2
  • Andrei Tchernykh
    • 3
  • Yang Xu
    • 4
  • Chao Wu
    • 4
  • Jianyan Wei
    • 4
  1. 1.Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and TechnologyTsinghua UniversityBeijingChina
  2. 2.College of Information EngineeringNingxia UniversityYinchuanChina
  3. 3.CICESE Research CenterEnsenadaMexico
  4. 4.National Astronomical Observatories, Chinese Academy of SciencesBeijingChina

Personalised recommendations