Advertisement

Modification of Interval Arithmetic for Modelling and Solving Uncertainly Defined Problems by Interval Parametric Integral Equations System

  • Eugeniusz Zieniuk
  • Marta Kapturczak
  • Andrzej Kużelewski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10862)

Abstract

In this paper we present the concept of modeling and solving uncertainly defined boundary value problems described by 2D Laplace’s equation. We define uncertainty of input data (shape of boundary and boundary conditions) using interval numbers. Uncertainty can be considered separately for selected or simultaneously for all input data. We propose interval parametric integral equations system (IPIES) to solve so-define problems. We obtain IPIES in result of PIES modification, which was previously proposed for precisely (exactly) defined problems. For this purpose we have to include uncertainly defined input data into mathematical formalism of PIES. We use pseudo-spectral method for numerical solving of IPIES and propose modification of directed interval arithmetic to obtain interval solutions. We present the strategy on examples of potential problems. To verify correctness of the method, we compare obtained interval solutions with analytical ones. For this purpose, we obtain interval analytical solutions using classical and directed interval arithmetic.

Keywords

Interval arithmetic Interval modeling Potential boundary value problems Parametric integral equations system (PIES) 

References

  1. 1.
    Potter, R.W.: The Art of Measurement: Theory and Practise. Prentice Hall, Upper Saddle River (2000)Google Scholar
  2. 2.
    Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vol. 1–3. Butter-Worth, Oxford (2000)Google Scholar
  3. 3.
    Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Techniques: Theory and Applications in Engineering. Springer, New York (1984).  https://doi.org/10.1007/978-3-642-48860-3CrossRefzbMATHGoogle Scholar
  4. 4.
    Moore, R.E.: Interval Analysis. Prentice-Hall, New York (1966)zbMATHGoogle Scholar
  5. 5.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  6. 6.
    Muhanna, R.L., Mullen, R.L., Rama Rao, M.V.: Nonlinear interval finite elements for structural mechanics problems. In: Vořechovský, M., Sadílek, V., Seitl, S., Veselý, V., Muhanna, R.L., Mullen, R.L., (eds.) 5th International Conference on Reliable Engineering Computing, pp. 367–387 (2012)Google Scholar
  7. 7.
    Piasecka-Belkhayat, A.: Interval boundary element method for transient diffusion problem in two layered domain. J. Theore. Appl. Mech. 49(1), 265–276 (2011)zbMATHGoogle Scholar
  8. 8.
    Jaswon, M.A.: Integral equation methods in potential theory. Proc. Roy. Soc. Ser. A 275, 23–32 (1963)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zieniuk, E., Szerszen, K., Kapturczak, M.: A numerical approach to the determination of 3D stokes flow in polygonal domains using PIES. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7203, pp. 112–121. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31464-3_12CrossRefGoogle Scholar
  10. 10.
    Zieniuk, E., Szerszeń, K.: Triangular Bézier surface patches in modeling shape of boundary geometry for potential problems in 3D. Eng. Comput. 29(4), 517–527 (2013)CrossRefGoogle Scholar
  11. 11.
    Zieniuk, E., Kapturczak, M., Kużelewski, A.: Concept of modeling uncertainly defined shape of the boundary in two-dimensional boundary value problems and verification of its reliability. Appl. Math. Model. 40(23–24), 10274–10285 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hentenryck, P.: Standarized notation in interval analysis. In: Proceedings XIII Baikal International School-seminar “Optimization Methods and Their Applications”, Interval analysis, vol. 4, pp. 106–113 (2005)Google Scholar
  13. 13.
    Dawood, H.: Theories of Interval Arithmetic: Mathematical Foundations and Applications. LAP Lambert Academic Publishing (2011)Google Scholar
  14. 14.
    Zieniuk, E., Kapturczak, M., Kużelewski, A.: Solving interval systems of equations obtained during the numerical solution of boundary value problems. Comput. Appl. Mathe. 35(2), 629–638 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Markov, S.M.: Extended interval arithmetic involving intervals. Mathe. Balkanica 6, 269–304 (1992). New SeriesMathSciNetzbMATHGoogle Scholar
  16. 16.
    Zieniuk, E., Kapturczak, M., Sawicki, D.: The NURBS curves in modelling the shape of the boundary in the parametric integral equations systems for solving the Laplace equation. In: Simos, T., Tsitouras, Ch. (eds.) 13th International Conference of Numerical Analysis and Applied Mathematics ICNAAM 2015, AIP Conference Proceedings, vol. 1738, 480100 (2016).  https://doi.org/10.1063/1.4952336
  17. 17.
    Hromadka II, T.V.: The Complex Variable Boundary Element Method in Engineering Analysis. Springer, New York (1987).  https://doi.org/10.1007/978-1-4612-4660-2CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eugeniusz Zieniuk
    • 1
  • Marta Kapturczak
    • 1
  • Andrzej Kużelewski
    • 1
  1. 1.Faculty of Mathematics and InformaticsUniversity of BialystokBialystokPoland

Personalised recommendations