Advertisement

The t-Modified Self-Shrinking Generator

  • Sara D. CardellEmail author
  • Amparo Fúster-Sabater
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10860)

Abstract

Pseudo-random sequences exhibit interesting properties with applications in many and distinct areas ranging from reliable communications to number generation or cryptography. Inside the family of decimation-based sequence generators, the modified self-shrinking generator (an improved version of the self-shrinking generator) is one of its best-known elements. In fact, such a generator divides the PN-sequence produced by a maximum-length LFSR into groups of three bits. When the sum of the first two bits in a group is one, then the generator returns the third bit, otherwise the bit is discarded. In this work, we introduce a generalization of this generator, where the PN-sequence is divided into groups of t bits, \(t\ge 2\). It is possible to check that the properties of the output sequences produced by this family of generators have the same or better properties than those of the classic modified self-shrunken sequences. Moreover, the number of sequences generated by this new family with application in stream cipher cryptography increases dramatically.

Keywords

Decimation Modified self-shrinking generator Linear complexity Characteristic polynomial 

References

  1. 1.
    Golomb, S.W.: Shift Register-Sequences. Aegean Park Press, Laguna Hill (1982)zbMATHGoogle Scholar
  2. 2.
    Delgado-Mohatar, O., Fúster-Sabater, A.: Software implementation of cryptographic sequence generators over extended fields. Logic J. IGPL 23(1), 73–87 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Paar, C., Pelzl, J.: Understanding Cryptography. Springer, Berlin (2010).  https://doi.org/10.1007/978-3-642-04101-3CrossRefzbMATHGoogle Scholar
  4. 4.
    Coppersmith, D., Krawczyk, H., Mansour, Y.: The Shrinking Generator. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48329-2_3CrossRefGoogle Scholar
  5. 5.
    Cardell, S.D., Fúster-Sabater, A.: Modelling the shrinking generator in terms of linear CA. Adv. Math. Commun. 10(4), 797–809 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cardell, S.D., Fúster-Sabater, A., Ranea, A.: Linearity in decimation-based generators: an improved cryptanalysis on the shrinking generator. Open Math. 16(1), April 2018MathSciNetCrossRefGoogle Scholar
  7. 7.
    Meier, W., Staffelbach, O.: The self-shrinking generator. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 205–214. Springer, Heidelberg (1995).  https://doi.org/10.1007/BFb0053436CrossRefGoogle Scholar
  8. 8.
    Kanso, A.: Modified self-shrinking generator. Comput. Electr. Eng. 36(5), 993–1001 (2010)CrossRefGoogle Scholar
  9. 9.
    Blackburn, S.R., Galbraith, S.: Cryptanalysis of two cryptosystems based on group actions. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 52–61. Springer, Heidelberg (1999).  https://doi.org/10.1007/978-3-540-48000-6_6CrossRefGoogle Scholar
  10. 10.
    Cardell, S.D., Fúster-Sabater, A.: Recovering the MSS-sequence via CA. Proc. Comput. Sci. 80, 599–606 (2016)CrossRefGoogle Scholar
  11. 11.
    Hu, Y., Xiao, G.: Generalized self-shrinking generator. IEEE Trans. Inf. Theory 50(4), 714–719 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zhang, Y., Lei, J.G., Zhang, S.P.: A new family of almost difference sets and some necessary conditions. IEEE Trans. Inf. Theory 52(5), 2052–2061 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cardell, S.D., Fúster-Sabater, A.: Discrete linear models for the generalized self-shrunken sequences. Finite Fields Appl. 47, 222–241 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Matemática, Estatística e Computação Científica, UNICAMPCampinasBrazil
  2. 2.Instituto de Tecnologías Físicas y de la Información, C.S.I.C.MadridSpain

Personalised recommendations