Understanding Malaria Induced Red Blood Cell Deformation Using Data-Driven Lattice Boltzmann Simulations
Abstract
Malaria remains a deadly disease that affected millions of people in 2016. Among the five Plasmodium (P.) parasites which contribute to malaria diseases in humans. P. falciparum is a lethal one which is responsible for the majority of the world-wide-malaria-related deaths. Since the banana-shaped stage V gametocytes play a crucial role in disease transmission, understanding the deformation of single stage V gametocytes may offer deeper insights into the development of the disease and provide possible targets for new treatment methods. In this study we used lattice Boltzmann-based simulations to investigate the effects of the stretching forces acting on infected red blood cells inside a slit-flow cytometer. The parameters that represent the cellular deformability of healthy and malaria infected red blood cells are chosen such that they mimic the deformability of these cells in a slit-flow cytometer. The simulation results show good agreement with experimental data and allow for studying the transportation of malaria infected red blood cell in blood circulation.
Keywords
Malaria-infected red blood cells Lattice Boltzmann Stage V gametocyteReferences
- 1.Aingaran, M., Zhang, R., Law, S.K., Peng, Z., Undisz, A., Meyer, E., Diez-Silva, M., Burke, T.A., Spielmann, T., Lim, C.T., Suresh, S., Dao, M., Marti, M.: Host cell deformability is linked to transmission in the human malaria parasite P. falciparum. Cell. Microbiol. 14(7), 983–993 (2012)CrossRefGoogle Scholar
- 2.Alowayyed, S., Závodszky, G., Azizi, V., Hoekstra, A.G.: Load balancing of parallel cell-based blood flow simulations. J. Comput. Sci. 24, 1–7 (2018)CrossRefGoogle Scholar
- 3.Artoli, A.M.M., Hoekstra, A.G., Sloot, P.M.A.: 3D pulsatile flow with the lattice Boltzmann BGK method. Int. J. Mod. Phys. C 13(8), 1119–1134 (2002)CrossRefGoogle Scholar
- 4.Artoli, A.M.M., Hoekstra, A.G., Sloot, P.M.A.: Simulation of a systolic cycle in a realistic artery with the lattice Boltzmann BGK method. Int. J. Mod. Phys. C 17(1 en 2), 95–98 (2003)CrossRefGoogle Scholar
- 5.Axner, L., Hoekstra, A.G., Sloot, P.M.A.: Simulating time harmonic flows with the lattice Boltzmann method. Phys. Rev. E 75, 036709 (2007)CrossRefGoogle Scholar
- 6.Bernaschi, M., Fatica, M., Melchionna, S., Succi, S., Kaxiras, E.: A flexible high-performance lattice Boltzmann GPU code for the simulations of fluid flows in complex geometries. Concurr. Comput.: Pract. Exp. 22(1), 1–14 (2010)CrossRefGoogle Scholar
- 7.Dixon, M.W., Dearnley, M.K., Hanssen, E., Gilberger, T., Tilley, L.: Shape-shifting gametocytes: how and why does P. falciparum go banana-shaped? Trends Parasitol. 28(11), 471–478 (2012)CrossRefGoogle Scholar
- 8.Dearnley, M.K., Yeoman, J.A., Hanssen, E., Kenny, S., Turnbull, L., Whitchurch, C.B., Tilley, L., Dixon, M.W.: Origin, composition, organization and function of the inner membrane complex of P. falciparum gametocytes. J. Cell Sci. 125(Pt 8), 2053–2063 (2012)CrossRefGoogle Scholar
- 9.Eggleton, C.D., Popel, A.S.: Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids 10(8), 1834–1845 (1998)CrossRefGoogle Scholar
- 10.Goergen, C.J., Shadden, S.C., Marsden, A.L.: SimVascular as an instructional tool in the classroom. In: 2017 IEEE Frontiers in Education Conference (FIE), Indianapolis, IN, pp. 1–4 (2017)Google Scholar
- 11.Gross, M., Krüger, T., Varnik, F.: Rheology of dense suspensions of elastic capsules: normal stresses, yield stress, jamming and confinement effects. Soft Matter 10, 4360–4372 (2014)CrossRefGoogle Scholar
- 12.Hanssen, E., Knoechel, C., Dearnley, M., Dixon, M.W., Le Gros, M., Larabell, C., Tilley, L.: Soft X-ray microscopy analysis of cell volume and hemoglobin content in erythrocytes infected with asexual and sexual stages of Plasmodium falciparum. J. Struct. Biol. 177(2), 224–232 (2011)CrossRefGoogle Scholar
- 13.Hawking, F., Gammage, K., Worms, M.J.: Evidence for cyclic development and short-lived maturity in the gametocytes of Plasmodium falciparum. Trans. R. Soc. Trop. Med. Hyg. 65(5), 549–559 (1971)CrossRefGoogle Scholar
- 14.Heldt, T., Mukkamala, R., Moody, G.B., Mark, R.G.: CVSim: an open-source cardiovascular simulator for teaching and research. Open Pacing Electrophysiol. Ther. J. 3, 45–54 (2011)Google Scholar
- 15.Hoekstra, A.G., Alowayyed, S., Lorenz, E., Melnikova, N., Mountrakis, L., van Booij, B., et al.: Towards the virtual artery: a multiscale model for vascular physiology at the physics-chemistry-biology interface. Philos. Trans. R. Soc. A 374, 20160146 (2016)CrossRefGoogle Scholar
- 16.Kaandorp, J.A., Lowe, C.P., Frenkel, D., Sloot, P.M.A.: The effect of nutrient diffusion and flow on coral morphology. Phys. Rev. Lett. 77(11), 2328–2331 (1996)CrossRefGoogle Scholar
- 17.Kandhai, D., Koponen, A., Hoekstra, A.G., Kataja, M., Timonen, J., Sloot, P.M.A.: Lattice-Boltzmann hydrodynamics on parallel systems. Comput. Phys. Commun. 111(1–3), 14–26 (1998)CrossRefGoogle Scholar
- 18.Krüger, T., Varnik, F., Raabe, D.: Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Comput. Math. Appl. 61, 3485–3505 (2011)MathSciNetCrossRefGoogle Scholar
- 19.Krüger, T., Gross, M., Raabe, D., Varnik, F.: Crossover from tumbling to tank-threading-like motion in dense simulated suspensions of red blood cells. Soft Matter 9, 9008–9015 (2013)CrossRefGoogle Scholar
- 20.Krüger, T.: Effect of tube diameter and capillary number on platelet margination and near-wall dynamics. Rheol. Acta 55, 511–526 (2016)CrossRefGoogle Scholar
- 21.Laveran, A.: A new parasite found in the blood of malarial patients. Parasitic origin of malarial attacks. Bull. Mem. Soc. Med. Hop. Paris 17, 158–164 (1880)Google Scholar
- 22.Lavazec, C., Alano, P.: Uncovering the hideout of malaria sexual parasites. Blood 123(7), 954–955 (2014)CrossRefGoogle Scholar
- 23.Moon, D., Bur, A.J., Migler, K.B.: Multi-sample micro-slit rheometry. J. Rheol. 52(2), 1131–1142 (2008)CrossRefGoogle Scholar
- 24.Pan, C., Prins, J.F., Miller, C.T.: A high-performance lattice Boltzmann implementation to model flow in porous media. Comput. Phys. Commun. 158(2), 89–105 (2004)CrossRefGoogle Scholar
- 25.Radosinska, J., Vrbjar, N.: The role of red blood cell deformability and Na, K-ATPase function in selected risk factors of cardiovascular disease in humans: focus on hypertension, diabetes mellitus and hypercholesterolemia. Physiol. Res. 65(Suppl. 1), 43–54 (2016)Google Scholar
- 26.Salmon, R.: The lattice Boltzmann method as a basis for ocean circulation modeling. J. Mar. Res. 57, 503–535 (1999)CrossRefGoogle Scholar
- 27.Sinden, R.E.: Sexual development of malarial parasites. Adv. Parasitol. 22, 153–216 (1983)CrossRefGoogle Scholar
- 28.Tiburcio, M., Niang, M., Deplaine, G., Perrot, S., Bischoff, E., Ndour, P.A., Silvestrini, F., Khattab, A., Milon, G., David, P.H., Harderman, M., Vernick, K.D., Sauerwein, R.W., Preiser, P.R., Mercereau-Puijalon, O., Buffet, P., Alano, P., Lavazec, C.: A switch in infected erythrocyte deformability at the maturation and blood circulation of P. falciparum transmission stages. Blood 119(24), e172–e180 (2012)CrossRefGoogle Scholar
- 29.Thommes, G., Sea, M., Banda, M.K.: Lattice Boltzmann methods for shallow water flow applications. Int. J. Numer. Methods Fluids 55(7), 673–692 (2007)MathSciNetCrossRefGoogle Scholar
- 30.Tomaiuolo, G.: Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics 8(5), 051501 (2014)CrossRefGoogle Scholar
- 31.Tran, N.-P., Lee, M., Hong, S.: Performance optimization of 3D lattice Boltzmann flow solver on a GPU. Sci. Program. 2017, 1–16 (2017)Google Scholar
- 32.Tubbs, K.R., Tsai, F.T.C.: Multilayer shallow water flow using lattice Boltzmann method with high performance computing. Adv. Water Resour. 32(12), 1767–1776 (2009)CrossRefGoogle Scholar
- 33.WHO World Malaria Report (2017). http://apps.who.int/iris/bitstream/10665/259492/1/9789241565523-eng.pdf
- 34.Závodszky, G., van Rooij, B., Azizi, V., Hoekstra, A.: Cellular level in-silico modeling of blood rheology with an improved material model for red blood cells. Front. Physiol. 8, 563 (2017)CrossRefGoogle Scholar
- 35.Zhong, L., Feng, S., Lou, D., Gao, S.: Wind-driven, double-gyre, ocean circulation in a reduced-gravity, 2.5-layer, lattice Boltzmann model. Adv. Atmos. Sci. 23(4), 561–578 (2006)CrossRefGoogle Scholar
- 36.Zhou, J.G., Causon, D.M., Mingham, C.G., Ingram, D.M.: Numerical prediction of dam-break flows in general geometries with complex bed topography. J. Hydraul. Eng. 130(4), 332–340 (2004)CrossRefGoogle Scholar
- 37.Zhou, J.G.: Lattice Boltzmann simulations of discontinuous flows. Int. J. Mod. Phys. C: Comput. Phys. Phys. Comput. 18(1), 1–14 (2007)MathSciNetCrossRefGoogle Scholar
- 38.