Advertisement

Time-to-Failure Models for Selected Failure Mechanisms in Integrated Circuits

  • J. W. McPherson
Chapter

Abstract

Advanced integrated circuits (ICs) are very complex, both in terms of their design and in their usage of many dissimilar materials (semiconductors, insulators, metals, plastic molding compounds, etc.). For cost reductions per device and improved performance, scaling of device geometries has played a critically important role in the success of semiconductors. This scaling—where device geometries are generally reduced by 0.7 × for each new technology node and tend to conform to Moore’s Law—has caused the electric fields in the materials to rise (bringing the materials ever closer to their breakdown strength) and current densities in the metallization to rise causing electromigration (EM) concerns. The higher electric fields can accelerate reliability issues such as: time-dependent dielectric breakdown (TDDB), hot-carrier injection (HCI), and negative-bias temperature instability (NBTI). In addition, the use of dissimilar materials in a chip and in the assembly process produces a number of thermal expansion mismatches which can drive large thermomechanical stresses. These thermomechanical stresses can result in failure mechanisms such as stress migration (SM), creep, fatigue, cracking, delaminating interfaces, etc.

Bibliography

Corrosion

  1. Dunn, C. and J. McPherson: Recent Observations on VLSI Bond Pad Corrosion Kinetics, J. Electrochem. Soc., 661 (1988).CrossRefGoogle Scholar
  2. Flood, J.: Reliability Aspects of Plastic Encapsulated Integrated Circuits, IEEE International Reliability Physics Symposium Proceedings, 95 (1972).Google Scholar
  3. Gunn, J., R. Camenga and S. Malik: Rapid Assessment of the Humidity Dependence of IC Failure Modes by Use of Hast, IEEE International Reliability Physics Symposium Proceedings, 66 (1983).Google Scholar
  4. Koelmans, H.: Metallization Corrosion in Silicon Devices by Moisture-Induced Electrolysis, IEEE International Reliability Physics Symposium Proceedings, 168 (1974).Google Scholar
  5. Lawrence, D.. and J. McPherson: Corrosion Susceptibility of Al-Cu and Al-Cu-Si Films, J. Electrochem. Soc., Vol. 137, 3879 (1990).CrossRefGoogle Scholar
  6. McPherson, J.: VLSI Corrosion Models: A Comparison of Acceleration Factors, Proceedings of Third Intern. Symp. on Corrosion and Reliability of Electronic Materials and Devices, Electrochem. Soc., Vol. 94–29, 270 (1994).Google Scholar
  7. Paulson, W. and R. Kirk: The Effects of Phosphorus-Doped Passivation Glass on the Corrosion of Aluminum, IEEE International Reliability Physics Symposium Proceedings, 172 (1972).Google Scholar
  8. Peck, D.: The Design and Evaluation of Reliable Plastic-Encapsulated Semiconductor Devices, IEEE International Reliability Physics Symposium Proceedings, 81 (1970).Google Scholar
  9. Peck, D.: A Comprehensive Model for Humidity Testing Correlation, IEEE International Reliability Physics Symposium Proceedings, 44 (1986).Google Scholar
  10. Schnable, A. and R. Keen: Failure Mechanisms in Large-Scale Integrated Circuits, IEEE International Reliability Physics Symposium Proceedings, 170 (1969).Google Scholar

Electromigration (EM)

  1. Black, J.: A Brief Survey of Some Recent Electromigration Results, IEEE Trans. Electron Dev., ED-16, 338 (1969).Google Scholar
  2. Blech, I. and H. Sello: The Failure of Thin Aluminum Current-Carrying Strips on Oxidized Silicon, Physics of Failures in Electronics Vol. 5, USAF-RADC Series, 496 (1966).Google Scholar
  3. d’Heurle, F. and P. Ho, Electromigration in Thin Films. In: Thin Films: Interdiffusion and Reactions, John Wiley & Sons, 243 (1978).Google Scholar
  4. Filippi, R., G. Biery and R. Wachnik: The Electromigration Short-Length Effect in Ti-AlCu-Ti Metallization with Tungsten Plugs, J. Appl. Phys., Vol. 78, 3756 (1995).CrossRefGoogle Scholar
  5. Graas, C., H. Le, J. McPherson and R. Havemann, Electromigration Reliability Improvements of W-Plug vias by Titanium Layering, IEEE International Reliability Physics Symposium Proceedings, 173 (1994).Google Scholar
  6. Hau-Riege, S.: Probabilistic Immortality of Cu Damascene Interconnects, Journal of Applied Physics, 91(4), 2014 (2002).CrossRefGoogle Scholar
  7. Hau-Riege, C. A. P. Marathe, and V. Pham: The Effect of Low-k ILD on the Electromigration Reliability of Cu Interconnects with Different Line Lengths, 41st Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 173 (2003).Google Scholar
  8. Hu, C. et al.: Scaling Effect on Electromigration in On-Chip Cu Wiring, IEEE International Interconnect Conference, 267 (1999).Google Scholar
  9. Hu, C., et al.: Effects of Overlayers on Electromigration Reliability Improvement for Cu/Low K Interconnects, 42th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 222 (2004).Google Scholar
  10. Huntington, H. and A. Grone: Current Induced Marker Motion in Gold Wires, J. Phys. Chem. Solids, VOL. 20, 76 (1961).CrossRefGoogle Scholar
  11. Hussein, M. and J. He: Materials Impact on Interconnect Process Technology and Reliability, IEEE Transactions on Semiconductor Manufacturing, 18(01), 69 (2005).CrossRefGoogle Scholar
  12. Lane, M., E. Liniger, and J. R. Lloyd: Relationship between interfacial adhesion and electromigration in Cu metallization, J. Appl. Phys., 93(3), 1417 (2003).CrossRefGoogle Scholar
  13. Lee, K., X. Lu, E. T. Ogawa, H. Matsuhashi, and P. S. Ho: Electromigration Study of Cu/low k Dual-damascene Interconnects, 40th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 322 (2002).Google Scholar
  14. Lloyd, J.: Electromigration in Thin Film Conductors, Semicond. Sci. Technol. 12, 1177 (1997). Maiz, J.: Characterization of Electromigration under Bidirectional and Pulsed Unidirectional Currents, IEEE International Reliability Physics Symposium Proceedings, 220 (1989).Google Scholar
  15. Martin, C. and J. McPherson: Via Electromigration Performance of Ti/W/Al-Cu(2%) Multilayered Metallization, VLSI Multilevel Interconnect Conference Proceedings, 168 (1989).Google Scholar
  16. McPherson, J., H. Le and C. Graas: Reliability Challenges for Deep Submicron Interconnects, Microelectronics Reliability, Vol. 37, 1469 (1997).CrossRefGoogle Scholar
  17. Michael, N., C. Kim, P. Gillespie, and R. Augur: Mechanism of Reliability Failure in Cu Interconnects with Ultra-Low Materials, Applied Physics Letters, 83(10), 1959 (2003).CrossRefGoogle Scholar
  18. Oates, A.: Electromigration Failure Distribution of Contacts and Vias as a Function of Stress Conditions in Submicron IC Metallizations, IEEE International Reliability Physics Symposium Proceedings, 164 (1996).Google Scholar
  19. Ogawa, E., et al.: Statistics of Electromigration Early Failures in Cu/Oxide Dual-Damascene Interconnects, 39th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 341(2001).Google Scholar
  20. Ogawa, E., K.-D. Lee, V. A. Blaschke, and P. S. Ho: Electromigration Reliability Issues in Dual-Damascene Cu Interconnections, IEEE Transactions on Reliability, 51(4), 403 (2002a).CrossRefGoogle Scholar
  21. Ondrusek, J., C. Dunn and J. McPherson: Kinetics of Contact Wearout for Silicided(TiSi2) and Nonsilicided Contacts, IEEE International Reliability Physics Symposium Proceedings, 154 (1987).Google Scholar
  22. Park, Y. Park, K.-D. Lee and W. R. Hunter, 43th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 18 (2005).Google Scholar
  23. Shatzkes, M. and J. R. Lloyd: A Model for Conductor Failure Considering Concurrently with Electromigration Resulting in a Current Exponent of 2, J. Appl. Physics, Vol. 59, 3890 (1986).Google Scholar
  24. Steenwyk, S. and E. Kankowski: Electromigration in Aluminum to Ta-Silicide Contacts, IEEE International Reliability Physics Symposium Proceedings, 30 (1986).Google Scholar
  25. Ting, L., J. May, W. Hunter and J. McPherson: AC Electromigration Characterization and Modeling of Multilayered Interconnects, IEEE International Reliability Physics Symposium Proceedings, 311 (1993).Google Scholar
  26. Vaidya, S. et al.: Electromigration Induced Shallow Junction Leakage with Al/Poly-Si Metallization, J. Electrochem. Soc., Vol. 130, 496 (1983).CrossRefGoogle Scholar
  27. Vaidya, S., et al.: Shallow Junction Cobalt Silicide Contacts with Enhanced Electromigration Resistance, J. Appl. Phys. Vol. 55, 3514 (1984).CrossRefGoogle Scholar

Hot Carrier Injection (HCI)

  1. Aur, S., A. Chatterjee and T. Polgreen: Hot Electron Reliability and ESD Latent Damage, IEEE International Reliability Physics Symposium Proceedings, 15 (1988).Google Scholar
  2. Fang, P., J.T. Yue, and D. Wollesen: A Method to Project Hot-Carrier Induced Punch Through Voltage Reduction for Deep Submicron LDD PMOS FETs at Room and Elevated Temperatures, IEEE International Reliability Physics Symposium Proceedings, 131 (1982).Google Scholar
  3. LaRosa, G., et al.: NBTI Channel Hot Carrier Efffects in PMOSFETS in Advanced CMOS Technologies, IEEE International Reliability Physics Symposium Proceedings, 282 (1997a).Google Scholar
  4. Liu, Z., et al.: Design Tools for Reliability Analysis, IEEE Design Tools for Reliability Analysis, IEEE Design Automation Conference, pp. 182–185, (2006).Google Scholar
  5. Lu, M., et al.: Hot Carrier Degradation in Novel Strained Si n-MOSFETs, IEEE International Reliability Physics Symposium Proceedings, pp. 18–21, (2004).Google Scholar
  6. Ong, T., P. Ko and C. Hu: Hot-Carrier Current Modeling and Device Degradation in Surface Channel PMOSFET, IEEE Trans. on Electron Devices, ED-37, 1658 (1990).CrossRefGoogle Scholar
  7. Snyder, E., D. Cambell, S. Swanson and D. Pierce: Novel Self-Stressing Test Structures for Realistic High-Frequency Reliability Characterization, IEEE International Reliability Physics Symposium Proceedings, 57 (1993).Google Scholar
  8. Takeda, E., R. Izawa, K. Umeda and R. Nagai: AC Hot-Carrier Effects in Scaled MOS Devices, IEEE International Reliability Physics Symposium Proceedings, 118 (1991).Google Scholar
  9. Wang, W., et al.: An Integrated Modeling Paradigm of Circuit Reliability for 65 nm CMOS Technology, IEEE Custom Integrated Circuits Conference, pp. 511–514 (2007).Google Scholar
  10. Wang-Ratkovic, J. et al.: New Understanding of LDD CMOS Hot-Carrier Degradation and Device Lifetime at Cryogenic Temperatures, IEEE International Reliability Physics Symposium Proceedings, 312 (1997).Google Scholar
  11. Yue J.: Reliability. In: ULSI Technology, McGraw-Hill, 657 (1996a).Google Scholar

Mobile-Ions/Surface-Inversion

  1. Hefley, P. and J. McPherson: The Impact of an External Sodium diffusion Source on the Reliability of MOS Circuitry, IEEE International Reliability Physics Symposium Proceedings, 167 (1988).Google Scholar
  2. Schnable, A.: Failure Mechanisms in Microelectronic Devices, Microelectronics and Reliability, (1988).Google Scholar
  3. Snow, E., A.S. Grove, B.E. Deal, and C.T. Sah: Ion Transport Phenomenon in Insulating Films, J. Appl. Phys. Vol 36, 1664 (1965).Google Scholar
  4. Snow, E. and B.E. Deal: Polarization Phenomena and Other Properties of Phosphosilicate Glass Films on Silicon, J. Electrochem. Soc., Vol 113, 263 (1966).CrossRefGoogle Scholar
  5. Stuart, D.: Calculations of Activation Energy of Ionic Conductivity in Silica Glass by Classical Methods, Journal of the American Ceramic Society, 573 (1954).Google Scholar

Negative-Bias Temperature Instability (NBTI)

  1. Abadeer, W. and W. Ells: Behavior of NBTI Under AC Dynamical Circuit Conditions, IEEE International Reliability Physics Symp., pp. 17–22, (2003).Google Scholar
  2. Alam, A., et al.: A Comprehensive Model of PMOS Negative Bias Temperature Degradation, Microelectronics Reliability, pp. 71–81 (2005).Google Scholar
  3. Chakravarthi, S. et al.: A Comprehensive Framework for Predictive Modeling of Negative Bias Temperature Instability, IEEE International Reliability Physics Symp. pp. 273–282, (2004).Google Scholar
  4. Chen, G., et al.: Dynamic NBTI of PMOS Transistors and Its Impact on Device Lifetime, IEEE International Reliability Physics Symp. pp. 196–202, (2003).Google Scholar
  5. Huard V. and M. Denais: Hole Trapping Effect on Methodology for DC and AC Negative Bias Temperature Instability Measurements in pMOS transistors, IEEE International Reliability Physics Symp. pp. 40–45 (2003).Google Scholar
  6. Kimizuka, N., et al.,: The Impact of Bias Temperature Instability for Direct-Tunneling in Ultrathin Gate Oxide on MOSFET Scaling, VLSI Symp. On Tech., pp. 73–74, (1999).Google Scholar
  7. Krishnan, A., et al.: NBTI Impact on Transistor and Circuit: Models, Mechanisms and Scaling Effects, IEEE-IEDM, pp. 349–352, (2003).Google Scholar
  8. Larosa, G., et al.,: NBTI-Channel Hot Carrier Effects in Advanced Sub-Micron PFET Technologies, IEEE Interational Reliability Physics Symp. Proceedings, pp. 282–286 (1997b).Google Scholar
  9. Mahaptra, S., et al.: Negative bias Temperature Instability in CMOS Devices, Microelectronics Reliability, pp. 114–121 (2005).Google Scholar
  10. Ogawa, S. and N. Shiono: Generalized Diffusion–reaction Model for the Low-Field Chaarge Buildup Instability at the Si-SiO2 Interface, Physical Rev. B, p. 4218 (1995).CrossRefGoogle Scholar
  11. Rangan, S., et al.: Universal Recovery Behavior of Negative Bias Temperature Instability, IEEE-IEDM, pp. 341–344.(2003).Google Scholar
  12. Reddy, V., et al.: Impact of Negative Bias Temperature Instability on Digital Circuit Reliability, pp. 248–254, (2002).Google Scholar
  13. Schlunder, C. et al.: Evaluation of MOSFET Reliability in Analog Applications, IEEE, International Reliability Physics Symposium, pp. 5–10, (2003).Google Scholar
  14. Stathis, J. and S. Zafar: The Negative Bias Temperature Instability of MOS Devices: A Review, Microelectronics Reliability, pp. 270–286 (2006).Google Scholar

Stress Migration/Stress-Induced Voiding

  1. Edelstein, D., et al.: Full Copper Wiring in a Sub-0.25 μm CMOS ULSI Technology, IEEE International Electron Devices Meeting Technical Digest, 773 (1997).Google Scholar
  2. Groothuis, S. and W. Schroen: Stress Related Failures Causing Open Metallization, IEEE International Reliability Physics Symposium Proceedings, 1 (1987).Google Scholar
  3. Harper, J., et al.: Mechanisms for Microstructure Evolution in Electroplated Copper Thin Films Near Room Temperature, Journal of Applied Physics, 86(5), 2516 (1999).CrossRefGoogle Scholar
  4. Klema, J., R. Pyle and E. Domangue: Reliability Implications of Nitrogen Contaminated during Deposition of Sputtered Aluminum/Silicon Metal Films, IEEE International Reliability Physics Symposium Proceedings, 1 (1984).Google Scholar
  5. McPherson, J. and C. Dunn: A Model for Stress-Induced Metal Notching and Voiding in VLSI Al-Si Metallization, J. Vac. Sci. Technology B, 1321 (1987).Google Scholar
  6. McPherson, J.: Accelerated Testing. In: Electronic Materials Handbook, Volume 1 Packaging, ASM International Publishing, 887 (1989).Google Scholar
  7. Ogawa, E., J. W. McPherson, J. A. Rosal, K. J. Dickerson, T.-C. Chiu, L. Y. Tsung, M. K. Jain, T. D. Bonifield, J. C. Ondrusek, and W. R. McKee: Stress-Induced Voiding Under Vias Connected To Wide Cu Metal Leads, 40th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 312 (2002b).Google Scholar
  8. Paik, J., J.-K. Jung and Y.-C. Joo: The Dielectric Material Dependence of Stress and Stress Relaxation on the Mechanism of Stress-Voiding of Cu Interconnects, 43th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 195 (2005).Google Scholar
  9. Von Glasow, A., A. H. Fischer, M. Hierlemann, S. Penka, and F. Ungar: Geometrical Aspects of Stress-Induced Voiding in Copper Interconnects, Advanced Metallization Conference Proceedings (AMC), 161 (2002).Google Scholar
  10. Yoshida, K., T. Fujimaki, K. Miyamoto, T. Honma, H. Kaneko, H. Nakazawa, and M. Morita: Stress-Induced Voiding Phenomena for an actual CMOS LSI Interconnects, IEEE International Electron Devices Meeting Technical Digest, 753 (2002).Google Scholar
  11. Yue, J., W. Fusten and R. Taylor: Stress Induced Voids in Aluminum Interconnects During IC Processing, IEEE International Reliability Physics Symposium Proceedings, 126 (1985).Google Scholar
  12. Yue, J.: Reliability. In: ULSI Technology, McGraw-Hill, 674 (1996b).Google Scholar

Temperature-Cycling/Fatigue

  1. Blish, R.: Temperature Cycling and Thermal Shock Failure Rate Modeling, IEEE International Reliability Physics Symposium Proceedings, 110 (1997).Google Scholar
  2. Caruso, H. and A. Dasgupta: A Fundamental Overview of Accelerated-Testing Analytical Models, Proceedings of Annual Rel. and Maintainability Symposium, 389 (1998).Google Scholar
  3. Coffin, L., Met. Eng. Q., Vol 3, 15 (1963).Google Scholar
  4. Dieter, G.: Mechanical Metallurgy, McGraw-Hill, 467 (1976).Google Scholar
  5. Dunn, C. and J. McPherson: Temperature Cycling Acceleration Factors in VLSI Applications, IEEE International Reliability Physics Symposium Proceedings, 252 (1990).Google Scholar
  6. Manson, S.: Thermal Stress and Low-Cycle Fatigue, McGraw-Hill Book Co., New York, (1966).Google Scholar

Time-Dependent Dielectric Breakdown (TDDB)

  1. Anolick, E. and G. Nelson: Low-Field Time-Dependent Dielectric Integrity, IEEE International Reliability Physics Symposium Proceedings, 8 (1979).Google Scholar
  2. Berman, A.: Time Zero Dielectric Reliability Test by a Ramp Method, IEEE International Reliability Physics Symposium Proceedings, 204 (1981).Google Scholar
  3. Boyko, K. and D. Gerlach: Time Dependent Dielectric Breakdown of 210A Oxides, IEEE International Reliability Physics Symposium Proceedings, 1 (1989).Google Scholar
  4. Charparala, P., et al.: Electric Field Dependent Dielectric Breakdown of Intrinsic SiO2 Films Under Dynamic Stress, IEEE International Reliability Physics Symposium Proceedings, 61 (1996).Google Scholar
  5. Chen, I., S. Holland and C. Hu: A Quantitative Physical Model for Time-dependent Breakdown, IEEE International Reliability Physics Symposium Proceedings, 24 (1985).Google Scholar
  6. Cheung, K.: A Physics-Based, Unified Gate-Oxide Breakdown Model, Technical Digest of Papers International Electron Devices Meeting, 719 (1999).Google Scholar
  7. Crook, D.: Method of Determining Reliability Screens for Time-Dependent Dielectric Breakdown, IEEE International Reliability Physics Symposium Proceedings, 1 (1979).Google Scholar
  8. Degraeve, R., et al.: New Insights in the Relation Between Electron Trap Generation and the Statistical Properties of Oxide Breakdown, IEEE Trans. Electron Devices 45, 904 (1998).CrossRefGoogle Scholar
  9. DiMaria, D. and J. Stasiak: Trap Creation in Silicon Dioxide Produced by hot electrons, J. Appl. Physics, Vol 65, 2342 (1989).CrossRefGoogle Scholar
  10. DiMaria, D., E. Cartier and D. Arnold: Impact ionization, trap creation, degradation, and breakdown in silicon dioxide films on silicon, J. Appl. Physics, Vol 73, 3367 (1993).CrossRefGoogle Scholar
  11. Eissa, M., D. A. Ramappa, E. Ogawa, N. Doke, E. M. Zielinski, C. L. Borst, G. Shinn, and A. J.McKerrow: Post-Copper CMP Cleans Challenges for 90 nm Technology, Advanced Metallization Conference Proceedings (AMC), 559 (2004).Google Scholar
  12. Hu, C. and Q. Lu: A Unified Gate Oxide Reliability Model, IEEE International Reliability Physics Symposium Proceedings, 47 (1999).Google Scholar
  13. Haase, G., E. T. Ogawa and J. W. McPherson: Breakdown Characteristics of Interconnect Dielectrics, 43th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 466 (2005).Google Scholar
  14. Kimura, M.: Oxide Breakdown Mechanism and Quantum Physical Chemistry for Time-Dependent Dielectric Breakdown, IEEE International Reliability Physics Symposium Proceedings, 190 (1997).Google Scholar
  15. Lee, J., I. Chen and C. Hu: Statistical Modeling of Silicon Dioxide Reliability, IEEE International Reliability Physics Symposium Proceedings, 131 (1988).Google Scholar
  16. McPherson, J. and D. Baglee: Acceleration factors for Thin Gate Oxide Stressing, IEEE International Reliability Physics Symposium Proceedings, 1 (1985).Google Scholar
  17. McPherson, J. and H. Mogul: Underlying Physics of the Thermochemical E-Model in Describing Low-Field Time-Dependent Dielectric Breakdown in SiO2 Thin Films, J. Appl. Phys., Vol. 84, 1513 (1998).CrossRefGoogle Scholar
  18. McPherson, J., R. Khamankar and A. Shanware: Complementary Model for Intrinsic Time-Dependent Dielectric Breakdown in SiO2 Dielectrics, J. Appl. Physics, Vol. 88, 5351 (2000).CrossRefGoogle Scholar
  19. McPherson, J.: Trends in the Ultimate Breakdown Strength of High Dielectric-Constant Materials, IEEE Trans. On Elect. Devs., Vol. 50, 1771 (2003).CrossRefGoogle Scholar
  20. McPherson, J.: Determination of the Nature of Molecular bonding in Silica from Time-Dependent Dielectric Breakdown Data, J. Appl. Physics, Vol. 95, 8101 (2004).CrossRefGoogle Scholar
  21. Moazzami, R., J. Lee and C. Hu: Temperature Acceleration of Time-Dependent Dielectric Breakdown, IEEE Trans. Elect. Devices, Vol. 36, 2462 (1989).CrossRefGoogle Scholar
  22. Nicollian, P.: Experimental Evidence for Voltage Driven Breakdown Models in Ultra-Thin Gate Oxides, IEEE International Reliability Physics Symposium, 47 (1999).Google Scholar
  23. Noguchi, J., N. Miura, M. Kubo, T. Tamaru, H. Yamaguchi, N. Hamada, K. Makabe, R. Tsuneda and K. Takeda: Cu-Ion-Migration Phenomena and its Influence on TDDB Lifetime in Cu Metallization, 41st Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 287 (2003).Google Scholar
  24. Ogawa, E., J. Kim and J. McPherson: Leakage, Breakdown, and TDDB Characteristics of Porous Low-k Silica-Based Interconnect Dielectrics, IEEE-IRPS Proceedings, 166 (2003a).Google Scholar
  25. Ogawa, E., J. Kim, G. S. Haase, H. C. Mogul, and J. W. McPherson: Leakage, Breakdown, and TDDB Characteristics of Porous Low-K Silica-Based Interconnect Dielectrics, 41st Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 166 (2003b).Google Scholar
  26. Pompl, T., et al.: Change in Acceleration Behavior of Time-Dependent Dielectric Breakdown by the BEOL Process: Indications for Hydrogen Induced Transition in Dominant Degradation Mechanism, IEEE International Reliability Physics Symposium, 388 (2005).Google Scholar
  27. Schuegraph, K. and C. Hu: Hole Injection Oxide Breakdown Model for Very Low Voltage Lifetime Extrapolations, IEEE International Reliability Physics Symposium Proceedings, 7 (1993).Google Scholar
  28. Suehle, J., et al.: Field and Temperature Acceleration of Time-Dependent Dielectric Breakdown in Intrinsic Thin SiO2, IEEE International Reliability Physics Symposium Proceedings, 120 (1994).Google Scholar
  29. Suehle, J. and P. Chaparala: Low Electric Field Breakdown of Thin SiO2 Films Under Static and Dynamic Stress, IEEE Trans. Elect. Devices, 801 (1997).Google Scholar
  30. Sune, J., D. Jimenez, and E. Miranda: Breakdown Modes and Breakdown Statistics of Ultrathin SiO2 Gate Oxides, J. High Speed Electronics and Systems, 11, 789 (2001).CrossRefGoogle Scholar
  31. Stathis, J and D. DiMaria: Reliability Projection for Ultra-Thin Oxides at Low Voltage, Technical Digest of Papers International Electron Devices Meeting, 167 (1998).Google Scholar
  32. Swartz, G.: Gate Oxide Integrity of NMOS Transistor Arrays, IEEE Trans. on Electron Devices, Vol. ED-33, 1826 (1986).CrossRefGoogle Scholar
  33. Tsu, R., J. W. McPherson, and W. R. McKee: Leakage and Breakdown Reliability Issues Associated with Low-k Dielectrics in a Dual-Damascene Cu Process, 38th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 348 (2000).Google Scholar
  34. Wu, E. et al.: Experimental Evidence of TBD Power-Law for Voltage Dependence of Oxide Breakdown in Ultrathin Gate Oxides, IEEE Trans. On Electron Devices, Vol. 49, 2244 (2002a).Google Scholar
  35. Wu, E., et al.: Polarity-Dependent Oxide Breakdown of NFET Devices for Ultra-Thin Gate Oxide, IEEE International Reliability Physics Symposium, 60 (2002b).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. W. McPherson
    • 1
  1. 1.McPherson Reliability Consulting, LLCPlanoUSA

Personalised recommendations