Alveolar Ridge Augmentation (Vertical and Horizontal) with Bioengineering

  • Tibebu Tsegga
  • Brian Rethman


Reconstruction of maxillomandibular alveolar defects continues to be a universal part of the vast majority of maxillofacial surgeon’s service obligation. Although there are numerous described techniques and autologous bone grafts stand on their own merit, the horizon of tissue engineering has dramatically shifted the landscape. As the combined nomenclature implies, bone bioengineering involves an apt understanding of fundamental principles of bone physiology with the necessary coexistent requirements of morphologic structure, containment, and hermetic seal. With current tissue engineering applications, it is possible and increasingly reproducible to regenerate multifaceted alveolus deficiencies. This chapter will illustrate the correction of horizontal, vertical, and combination defects of the maxillomandibular alveolus.


Alveolar tissue engineering FAMM flap Osteoperiosteal flap Containment device Alveolar defect 


  1. 1.
    Leonetti JA, Koup R. Localized maxillary ridge augmentation with a block allograft for dental implant placement: case report. Implant Dent. 2003;12:217.CrossRefGoogle Scholar
  2. 2.
    Petrungaro PS, Amar S. Localized ridge augmentation with allogenic block grafts prior to implant placement: case reports and histologic evaluations. Implant Dent. 2005;14:139.CrossRefGoogle Scholar
  3. 3.
    Al-Abedalla K, Torres J, Cortes AR, Wu X, Nader SA, Daniel N, Tamimi F. Bone augmented with allograft onlays for implant placement could be comparable with native bone. J Oral Maxillofac Surg. 2015;73(11):2108–22.CrossRefGoogle Scholar
  4. 4.
    Waasdorp J, Reynolds MA. Allogeneic bone onlay grafts for alveolar ridge augmentation: a systematic review. Int J Oral Maxillofac Implants. 2010;25:525–31.PubMedGoogle Scholar
  5. 5.
    Keith JD Jr, Petrungaro P, Leonetti JA, et al. Clinical and histologic evaluation of mineralized block allograft: results from the developmental period (2001–2004). Int J Periodontics Restorative Dent. 2006;26:321–7.PubMedGoogle Scholar
  6. 6.
    Marx RE, Turson R. A qualitative and quantitative analysis of autologous human multipotent adult stem cells derived from three anatomic areas by marrow aspiration: tibia, anterior ilium, and posterior ilium. Int J Oral Maxillofac Implants. 2013;28(5):e290–4.CrossRefGoogle Scholar
  7. 7.
    Irinakis T. Efficacy of injectable demineralized bone matrix as graft material during sinus elevation surgery with simultaneous implant placement in the posterior maxilla: clinical evaluation of 49 sinuses. J Oral Maxillofac Surg. 2011;69:134–41.CrossRefGoogle Scholar
  8. 8.
    Chiapasoo M, Casentini P, Zaniboni M. Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implants. 2009;24:237–69.Google Scholar
  9. 9.
    Jenson OT. The osteoperiosteal flap: a simplified approach to alveolar bone reconstruction. Hanover Park, IL: Quintessence; 2010.Google Scholar
  10. 10.
    Jenson OT, Bell W, Cottam J. Osteoperiosteal flaps and local osteotomies for alveolar reconstruction. Oral Maxillofac Surg Clin North Am. 2010;22:331–46.CrossRefGoogle Scholar
  11. 11.
    Tsegga T, Wright T. Maxillary segmental osteoperiosteal flap with simultaneous placement of dental implants: case report of a novel technique. Int J Implant Dent. 2017;3:2.CrossRefGoogle Scholar
  12. 12.
    Torres JT, Tamimi F, Alkhraisat MH, et al. Platelet-rich plasma may prevent titanium-mesh exposure in alveolar ridge augmentation with inorganic bovine bone. J Clin Periodontol. 2010;37:943–51.CrossRefGoogle Scholar
  13. 13.
    Louis JP, Gutta R, Said-Al-Naief N, Bartolucci AA. Reconstruction of the maxilla and mandible with particulate bone graft and titanium mesh for implant placement. J Oral Maxillofac Surg. 2008;66:2356–245.CrossRefGoogle Scholar
  14. 14.
    Fengzhou D, Huanhuan W, Haidong L, et al. Bone marrow mononuclear cells combined with beta-tricalcium phosphate granules for alveolar cleft repair: a 12-month clinical study. Sci Rep. 2017;7:13773.CrossRefGoogle Scholar
  15. 15.
    Van Hout WM, Mink van der Molen AB, Breugem CC, et al. Reconstruction of the alveolar cleft: can growth factor-aided tissue engineering replace autologous bone grafting? A literature review and systematic review of results obtained with bone morphogenetic protein-2. Clin Oral Investing. 2011;15(3):297–303.CrossRefGoogle Scholar
  16. 16.
    Francis CS, Mobin SS, Lypka MA, et al. rhBMP-2 with a demineralized bone matrix scaffold verses autologous iliac crest bone graft for alveolar cleft reconstruction. Last Reconstr Surg. 2013;131(5):1107–15.CrossRefGoogle Scholar
  17. 17.
    Schmidt BL. Maxillary reconstruction using zygomaticus implants. Atlas Oral Maxillofac Surg Clin North Am. 2007;15:43–9.CrossRefGoogle Scholar
  18. 18.
    Sevetz EB. Treatment of the severely atrophic fully edentulous maxilla: the zygoma implant option. Atlas Oral Max Surg clin N Am. 2006;14:121–36.Google Scholar
  19. 19.
    Att W, Bernhart J, Strub JR. Fixed rehabilitation of the edentulous maxilla: possibilities and clinical outcome. J Oral Maxillofac Surg. 2009;67(11 Suppl):60–73.CrossRefGoogle Scholar
  20. 20.
    Gil JN, claus JDP, Campos FEB, Lima SM Jr. Management of the severely resorbed maxilla using Le Fort I osteotomy. Int J Oral Maxillofac Surg. 2008;37:1153–5.CrossRefGoogle Scholar
  21. 21.
    Marx RE. Bone and bone grafting. Oral Maxillofac Surg Clin North Am. 2007;19:455–66.CrossRefGoogle Scholar
  22. 22.
    Block SM, Achong R. Bone morphogenetic protein for sinus augmentation. Atlas Oral Maxillofac Surg Clin North Am. 2006;14:99–105.CrossRefGoogle Scholar
  23. 23.
    Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100:157–68.CrossRefGoogle Scholar
  24. 24.
    Jager M, Herten M, Fochtmann U, et al. Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res. 2011;29(2):173–80.CrossRefGoogle Scholar
  25. 25.
    Pribaz J, Stephens W, Crespo L, et al. A new intraoral flap: facial artery musculomucosal (FAMM) flap. Plast Reconstr Surg. 1992;90(3):421–9.CrossRefGoogle Scholar
  26. 26.
    Lasjaunias P, Berenstein A, Doyon D. Normal functional anatomy of the facial artery. Radiology. 1979;133:631–8.CrossRefGoogle Scholar
  27. 27.
    Mitz V, Ricbourg B, Lassau JP. Facial branches of the facial artery in adults. Typology, variations and respective cutaneous areas. Ann Chir Plast. 1973;18:339–50.PubMedGoogle Scholar
  28. 28.
    Koh KS, Kim HJ, Oh CS, et al. Branching patterns and symmetry of the course of the facial artery in Koreans. Int J Oral Maxillofac Surg. 2003;32:414–8.CrossRefGoogle Scholar
  29. 29.
    Niranjan NS. An anatomical study of the facial artery. Ann Plast Surg. 1988;21:14–22.CrossRefGoogle Scholar
  30. 30.
    Bulter P, Lohn J, Penn J, Norton J. The course and variation of the facial artery and vein: implications for facial transplantation and facial surgery. Ann Plast Surg. 2011;67(2):184–8.CrossRefGoogle Scholar
  31. 31.
    Clementini M, Boniello R, Gasparini G, Moro A, Pelo S. Surgical treatment of severe atrophic maxilla by means of multiple extraoral harvesting. Oral Implantol. 2009;2(3):4–10.Google Scholar
  32. 32.
    Sasaki T, Watanabe C. Stimulation of osteoinduction in bone wound healing by high-molecular weight hyaluronic acid. Bone. 1995;16:9–15.CrossRefGoogle Scholar
  33. 33.
    Huang L, Cheng YY, Koo PL, et al. The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial-derived cell cultures. J Biomed Mater Res. 2003;66:880–4.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tibebu Tsegga
    • 1
  • Brian Rethman
    • 1
  1. 1.San Antonio Military Oral and Maxillofacial Surgery, Lackland Air Force BaseUnited States Air ForceTexasUSA

Personalised recommendations