Advertisement

Secure Contactless Payment

  • Handan KılınçEmail author
  • Serge Vaudenay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10946)

Abstract

A contactless payment lets a card holder execute payment without any interaction (e.g., entering PIN or signing) between the terminal and the card holder. Even though the security is the first priority in a payment system, the formal security model of contactless payment does not exist. Therefore, in this paper, we design an adversarial model and define formally the contactless-payment security against malicious cards and malicious terminals including relay attacks. Accordingly, we design a contactless-payment protocol and show its security in our security model. At the end, we analyze EMV-contactless which is a commonly used specification by most of the mobile contactless-payment systems and credit cards in Europe. We find that it is not secure against malicious cards. We also prove its security against malicious terminals in our model. This type of cryptographic proof has not been done before for the EMV specification.

References

  1. 1.
    Contactless payment market by solution (payment terminal, mobile payment, transaction and data management, security and fraud management), service (professional, managed), payment mode (mobile handsets, smart cards), vertical - global forecast to 2021. https://www.marketsandmarkets.com/Market-Reports/contactless-payments-market-1313.html
  2. 2.
    EMV Acquirer and Terminal Security GuidelinesGoogle Scholar
  3. 3.
    EMV Contactless Specifications for Payment Systems, Book C-2: Kernel 2 SpecificationGoogle Scholar
  4. 4.
    EMV Integrated Circuit Card Specifications for Payment Systems, Book 2: Security and Key ManagementGoogle Scholar
  5. 5.
    EMVCo: EMV Contactless Specifications for Payment Systems, Version 2.4 (2014)Google Scholar
  6. 6.
    Avoine, G., Bultel, X., Gambs, S., Gérault, D., Lafourcade, P., Onete, C., Robert, J.-M.: A terrorist-fraud resistant and extractor-free anonymous distance-bounding protocol. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 800–814. ACM (2017)Google Scholar
  7. 7.
    Bond, M., Choudary, M.O., Murdoch, S.J., Skorobogatov, S., Anderson, R.: Be prepared: the EMV preplay attack. IEEE Secur. Priv. 13(2), 56–64 (2015)CrossRefGoogle Scholar
  8. 8.
    Bond, M., Choudary, O., Murdoch, S.J., Skorobogatov, S., Anderson, R.: Chip and skim: cloning EMV cards with the pre-play attack. In: 2014 IEEE Symposium on Security and Privacy (SP), pp. 49–64. IEEE (2014)Google Scholar
  9. 9.
    Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Secure and lightweight distance-bounding. In: Avoine, G., Kara, O. (eds.) LightSec 2013. LNCS, vol. 8162, pp. 97–113. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40392-7_8CrossRefGoogle Scholar
  10. 10.
    Boureanu, I., Vaudenay, S.: Optimal proximity proofs. In: Lin, D., Yung, M., Zhou, J. (eds.) Inscrypt 2014. LNCS, vol. 8957, pp. 170–190. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16745-9_10CrossRefGoogle Scholar
  11. 11.
    Brands, S., Chaum, D.: Distance-bounding protocols (extended abstract). In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48285-7_30CrossRefGoogle Scholar
  12. 12.
    Bultel, X., Gambs, S., Gérault, D., Lafourcade, P., Onete, C., Robert, J.-M.: A prover-anonymous and terrorist-fraud resistant distance-bounding protocol. In: Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks, pp. 121–133. ACM (2016)Google Scholar
  13. 13.
    Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position based cryptography. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 391–407. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_23CrossRefGoogle Scholar
  14. 14.
    Chothia, T., Garcia, F.D., de Ruiter, J., van den Breekel, J., Thompson, M.: Relay cost bounding for contactless EMV payments. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 189–206. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47854-7_11CrossRefGoogle Scholar
  15. 15.
    Clulow, J., Hancke, G.P., Kuhn, M.G., Moore, T.: So near and yet so far: distance-bounding attacks in wireless networks. In: Buttyán, L., Gligor, V.D., Westhoff, D. (eds.) ESAS 2006. LNCS, vol. 4357, pp. 83–97. Springer, Heidelberg (2006).  https://doi.org/10.1007/11964254_9CrossRefGoogle Scholar
  16. 16.
    Cremers, C., Rasmussen, K.B., Schmidt, B., Capkun, S.: Distance hijacking attacks on distance bounding protocols. In: 2012 IEEE Symposium on Security and Privacy (SP), pp. 113–127. IEEE (2012)Google Scholar
  17. 17.
    Drimer, S., Murdoch, S.J., et al.: Keep your enemies close: distance bounding against smartcard relay attacks. In: USENIX security symposium, vol. 312 (2007)Google Scholar
  18. 18.
    Francillon, A., Danev, B., Capkun, S.: Relay attacks on passive keyless entry and start systems in modern cars. In: NDSS (2011)Google Scholar
  19. 19.
    Francis, L., Hancke, G., Mayes, K., Markantonakis, K.: Practical NFC peer-to-peer relay attack using mobile phones. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS, vol. 6370, pp. 35–49. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16822-2_4CrossRefGoogle Scholar
  20. 20.
    Kılınç, H., Vaudenay, S.: Efficient public-key distance bounding protocol. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 873–901. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_29CrossRefGoogle Scholar
  21. 21.
    Kılınç, H., Vaudenay, S.: Contactless access control based on distance bounding. In: Nguyen, P., Zhou, J. (eds.) ISC 2017. LNCS, vol. 10599, pp. 195–213. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69659-1_11CrossRefGoogle Scholar
  22. 22.
    Markantonakis, K., Francis, L., Hancke, G., Mayes, K.: Practical relay attack on contactless transactions by using NFC mobile phones. In: Radio Frequency Identification System Security: RFIDsec, vol. 12, p. 21 (2012)Google Scholar
  23. 23.
    Roland, M., Langer, J.: Cloning credit cards: a combined pre-play and downgrade attack on EMV contactless. In: WOOT (2013)Google Scholar
  24. 24.
    Vaudenay, S.: On modeling terrorist frauds. In: Susilo, W., Reyhanitabar, R. (eds.) ProvSec 2013. LNCS, vol. 8209, pp. 1–20. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41227-1_1CrossRefzbMATHGoogle Scholar
  25. 25.
    Vaudenay, S.: On privacy for RFID. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 3–20. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26059-4_1CrossRefGoogle Scholar
  26. 26.
    Vaudenay, S.: Private and secure public-key distance bounding: application to NFC payment. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 207–216. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47854-7_12CrossRefGoogle Scholar
  27. 27.
    Vaudenay, S.: Sound proof of proximity of knowledge. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 105–126. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26059-4_6CrossRefGoogle Scholar
  28. 28.
    Weiß, M.: Performing relay attacks on ISO 14443 contactless smart cards using NFC mobile equipment. Master’s thesis in Computer Science, University of Munich (2010)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.EPFLLausanneSwitzerland

Personalised recommendations