Advertisement

Post-Quantum One-Time Linkable Ring Signature and Application to Ring Confidential Transactions in Blockchain (Lattice RingCT v1.0)

  • Wilson Abel Alberto TorresEmail author
  • Ron SteinfeldEmail author
  • Amin SakzadEmail author
  • Joseph K. LiuEmail author
  • Veronika Kuchta
  • Nandita Bhattacharjee
  • Man Ho Au
  • Jacob Cheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10946)

Abstract

In this paper, we construct a Lattice-based one-time Linkable Ring Signature (L2RS) scheme, which enables the public to verify if two or more signatures were generated by same signatory, whilst still preserving the anonymity of the signatory. The L2RS provides unconditional anonymity and security guarantees under the Ring Short Integer Solution (Ring-SIS) lattice hardness assumption. The proposed L2RS scheme is extended to be applied in a protocol that we called Lattice Ring Confidential transaction (Lattice RingCT) v1.0, which forms the foundation of the privacy-preserving protocol in any post-quantum secure cryptocurrency such as Hcash.

Keywords

Linkable ring signature Lattice-based cryptography Post-quantum cryptography Cryptocurrencies 

Notes

Acknowledgement

The work of Ron Steinfeld and Amin Sakzad was supported in part by ARC Discovery Project grant DP150100285. This work was also supported by the Monash-HKPU-Collinstar Blockchain Research Lab.

References

  1. 1.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45682-1_32CrossRefGoogle Scholar
  2. 2.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-46416-6_22CrossRefGoogle Scholar
  3. 3.
    Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27800-9_28CrossRefGoogle Scholar
  4. 4.
    Liu, J.K., Au, M.H., Huang, X., Susilo, W., Zhou, J., Yu, Y.: New insight to preserve online survey accuracy and privacy in big data era. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 182–199. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11212-1_11CrossRefGoogle Scholar
  5. 5.
    Noether, S.: Ring signature confidential transactions for monero. IACR Cryptology ePrint Archive, vol. 2015, p. 1098 (2015)Google Scholar
  6. 6.
    Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-88702-7_5CrossRefzbMATHGoogle Scholar
  10. 10.
    Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_3CrossRefGoogle Scholar
  11. 11.
    Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Secure ID-based linkable and revocable-iff-linked ring signature with constant-size construction. Theor. Comput. Sci. 469, 1–14 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Liu, J.K., Wong, D.S.: Enhanced security models and a generic construction approach for linkable ring signature. Int. J. Found. Comput. Sci. 17(6), 1403–1422 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Constant-size ID-based linkable and revocable-iff-linked ring signature. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 364–378. Springer, Heidelberg (2006).  https://doi.org/10.1007/11941378_26CrossRefGoogle Scholar
  14. 14.
    Liu, J.K., Susilo, W., Wong, D.S.: Ring signature with designated linkability. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 104–119. Springer, Heidelberg (2006).  https://doi.org/10.1007/11908739_8CrossRefGoogle Scholar
  15. 15.
    Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71677-8_13CrossRefGoogle Scholar
  16. 16.
    Tsang, P.P., Au, M.H., Liu, J.K., Susilo, W., Wong, D.S.: A suite of non-pairing ID-based threshold ring signature schemes with different levels of anonymity (extended abstract). In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp. 166–183. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16280-0_11CrossRefGoogle Scholar
  17. 17.
    Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Linkable ring signature with unconditional anonymity. IEEE Trans. Knowl. Data Eng. 26(1), 157–165 (2014)CrossRefGoogle Scholar
  18. 18.
    Yuen, T.H., Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Efficient linkable and/or threshold ring signature without random oracles. Comput. J. 56, 407–421 (2013)CrossRefGoogle Scholar
  19. 19.
    Bernstein, D.J., Lange, T.: Post-quantum cryptography. Nature 549, 188–194 (2017)CrossRefGoogle Scholar
  20. 20.
    Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052231CrossRefGoogle Scholar
  21. 21.
    Hoffstein, J., Pipher, J., Silverman, J.H.: NSS: an NTRU lattice-based signature scheme. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 211–228. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44987-6_14CrossRefGoogle Scholar
  22. 22.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Symposium on Theory of Computing - STOC 2008, pp. 197–206. ACM Press (2008)Google Scholar
  23. 23.
    Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10366-7_35CrossRefGoogle Scholar
  24. 24.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_12CrossRefGoogle Scholar
  25. 25.
    Ajtai, M.: Generating hard instances of lattice problems. In: ACM Symposium on Theory of Computing, pp. 99–108. ACM (1996)Google Scholar
  26. 26.
    Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Comput. Complex. 16(4), 365–411 (2007)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_1CrossRefGoogle Scholar
  28. 28.
    Brakerski, Z., Kalai, Y.T.: A Framework for Efficient Signatures, Ring Signatures and Identity Based Encryption in the Standard Model (2010). https://eprint.iacr.org/2010/086/
  29. 29.
    Aguilar Melchor, C., Bettaieb, S., Boyen, X., Fousse, L., Gaborit, P.: Adapting lyubashevsky’s signature schemes to the ring signature setting. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 1–25. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38553-7_1CrossRefGoogle Scholar
  30. 30.
    Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_1CrossRefGoogle Scholar
  31. 31.
    Yang, R., Ho Au, R., Lai, J., Xu, Q., Yu, Z.: Lattice-Based Techniques for Accountable Anonymity: Composition of Abstract Stern’s Protocols and Weak PRF with Efficient Protocols from LWR. https://eprint.iacr.org/2017/781/
  32. 32.
    Zhang, H., Zhang, F., Tian, H., Au, M.H.: Anonymous Post-Quantum Cryptocash (Full Version). https://eprint.iacr.org/2017/716/
  33. 33.
    Baum, C., Huang, L., Sabine, O.: Towards Practical Lattice-Based One-Time Linkable Ring Signatures (2018). https://eprint.iacr.org/2018/107/
  34. 34.
    Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclotomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 204–224. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_8CrossRefGoogle Scholar
  35. 35.
    Alberto Torres, W., Steinfeld, R., Sakzad, A., Liu, J.K., Kuchta, V., Bhattacharjee, N., Au, M.H., Cheng, J.: Post-Quantum One-Time Linkable Ring Signature and Application to Ring Confidential Transactions in Blockchain (Lattice RingCT v1.0). https://eprint.iacr.org/2018/379
  36. 36.
    Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency monero. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 456–474. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66399-9_25CrossRefGoogle Scholar
  37. 37.
    Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_1CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of ITMonash UniversityMelbourneAustralia
  2. 2.Hong Kong Polytechnic UniversityHung HomHong Kong
  3. 3.Collinstar CapitalMelbourneAustralia

Personalised recommendations