Advertisement

Multiphase Designs

  • Richard Valliant
  • Jill A. Dever
  • Frauke Kreuter
Chapter
Part of the Statistics for Social and Behavioral Sciences book series (SSBS)

Abstract

If the sampling frame does not have useful auxiliary information to reduce variances, multiphase sampling can be used. This chapter defines this type of sample design and gives real-life examples of multiphase designs. We examine the components needed to develop both base and analysis weights. Methods to determine overall sample size and allocation to phases are given. The chapter concludes with a discussion of software available for sample selection and analysis.

References

  1. AAPOR. (2016b). Standard definitions: Final dispositions of case codes and outcome rates for surveys, 9th edn. Tech. rep., The American Association for Public Opinion Research, Deerfield, IL, URL http://www.aapor.org/AAPOR_Main/media/publications/Standard-Definitions20169theditionfinal.pdf
  2. Axinn W. G., Link C. F., Groves R. M. (2011). Responsive survey design, demographic data collection, and models of demographic behavior. Demography 48(3):1127–1149.CrossRefGoogle Scholar
  3. Bart J., Earnst S. (2002). Double sampling to estimate density and population trends in birds. The Auk 119(1):36–45.CrossRefGoogle Scholar
  4. Breivik H., Cherny N., Collett B., de Conno F., Filbet M., Foubert A. J., Cohen R., Dow L. (2009). Cancer-related pain: A pan-European survey of prevalence, treatment, and patient attitudes. Annals of Oncology 20(8):1420–1433.CrossRefGoogle Scholar
  5. Bureau of Labor Statistics. (2017). American Time Use Survey User’s Guide, URL http://stats.bls.gov/tus/atususersguide.pdf
  6. Callegaro M., Baker R., Bethlehem J., Göritz A., Krosnick J., Lavrakas P. (eds) (2014). Online Panel Research: A Data Quality Perspective. John Wiley & Sons, Ltd., United Kingdom.Google Scholar
  7. Casella G., Berger R. (2002). Statistical Inference. Duxbury Press, Pacific Grove, CA.zbMATHGoogle Scholar
  8. Cochran W. (1977). Sampling Techniques. John Wiley & Sons, Inc., New York.zbMATHGoogle Scholar
  9. Dever J. A., Valliant R. (2010). A comparison of variance estimators for poststratification to estimated control totals. Survey Methodology 36:45–56.Google Scholar
  10. Dillman D. A., Smyth J. D., Christian L. M. (2009). Internet, Mail, and Mixed-Mode Surveys: The Tailored Design Method. John Wiley & Sons, Inc., Hoboken, NJ.Google Scholar
  11. Ezzati-Rice T., Rohde F., Greenblatt J. (2008). Sample design of the medical expenditure panel survey household component, 1998–2007. Tech. Rep. Methodology Report No. 22, Agency for Healthcare Research and Quality.Google Scholar
  12. Fuller W. A. (1998). Replication variance estimation for two-phase samples. Statistica Sinica 8:1153–1164.zbMATHGoogle Scholar
  13. Groves R. M., Heeringa S. G. (2006). Responsive design for household surveys: Tools for actively controlling survey errors and costs. Journal of the Royal Statistical Society, Series A: Statistics in Society 169(3):439–457.MathSciNetCrossRefGoogle Scholar
  14. Groves R. M., Peytcheva E. (2008). The impact of nonresponse rates on nonresponse bias. Public Opinion Quarterly 72:167–189.CrossRefGoogle Scholar
  15. Hansen M. H., Tepping B. J. (1990). Regression estimates in federal welfare quality control programs (C/R: P864–873). Journal of the American Statistical Association 85:856–864.CrossRefGoogle Scholar
  16. Hansen M. H., Hurwitz W. N., Madow W. G. (1953a). Sample Survey Methods and Theory, Volume I. John Wiley & Sons, Inc., New York.Google Scholar
  17. Hidiroglou M. A. (2001). Double sampling. Survey Methodology 27(2):143–154.MathSciNetGoogle Scholar
  18. Iannacchione V. G., Dever J. A., Bann C. M., Considine K. A., Creel D., Carson C. P., Best H. L., Haley R. W. (2011). Validation of a research case definition of Gulf War illness in the 1991 U.S. military population. Neuroepidemiology 37(2):129–140.CrossRefGoogle Scholar
  19. Ingels S. J., Pratt D. J., Herget D., Dever J. A., Ottem R., Rogers J., Jin Y., Leinwand S. (2011). High School Longitudinal Study of 2009 (HSLS:09) base-year data file documention (NCES 2011-328). Tech. rep., National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education, Washington, DC.Google Scholar
  20. Kalton G., Anderson D. (1986). Sampling rare populations. Journal of the Royal Statistical Society A 149:65–82.CrossRefGoogle Scholar
  21. Kim J. K., Yu C. L. (2011). Replication variance estimation under two-phase sampling. Survey Methodology 37(1):67–74.Google Scholar
  22. Kim J. K., Navarro A., Fuller W. A. (2006). Replication variance estimation for two-phase stratified sampling. Journal of the American Statistical Association 101(473):312–320.MathSciNetCrossRefGoogle Scholar
  23. Korn E. L., Graubard B. I. (1999). Analysis of Health Surveys. John Wiley & Sons, New York.CrossRefGoogle Scholar
  24. Kott P. S. (2006). Using calibration weighting to adjust for nonresponse and coverage errors. Survey Methodology 32(2):133–142.Google Scholar
  25. Kott P. S., Stukel D. M. (1997). Can the jackknife be used with a two-phase sample? Survey Methodology 23:81–89.Google Scholar
  26. Kreuter F., Couper M. P., Lyberg L. (2010). The use of paradata to monitor and manage survey data collection. In: Proceedings of the Survey Research Methods Section, American Statistical Association, pp 282–296.Google Scholar
  27. Lee H., Kim J. K. (2002). Jackknife variance estimation for two-phase samples with high sampling fractions. In: Proceedings of the Survey Research Methods Section, American Statistical Association, pp 2024–2028.Google Scholar
  28. Lepkowski J., Axinn W. G., Kirgis N., West B. T., Ndiaye S. K., Mosher W., Groves R. M. (2010). Use of paradata in a responsive design framework to manage a field data collection. NSFG Survey Methodology Working Papers (10-012), URL http://www.psc.isr.umich.edu/pubs/pdf/ng10-012.pdf
  29. Little R. J. A., Rubin D. B. (2002). Statistical Analysis with Missing Data. John Wiley & Sons, Inc., New Jersey.CrossRefGoogle Scholar
  30. Liu J., Aragon E. (2000). Subsampling strategies in longitudinal surveys. In: Proceedings of the Survey Research Methods Section, American Statistical Association, pp 307–312.Google Scholar
  31. Lohr S. L. (1999). Sampling: Design and Analysis. Duxbury Press, Pacific Grove, CA.zbMATHGoogle Scholar
  32. Matsuo H., Billiet J., Loosveldt G., Berglund F., Kleven Ø. (2010). Measurement and adjustment of non-response bias based on non-response surveys: The case of Belgium and Norway in the European Social Survey round 3. Survey Research Methods 4:165–178.Google Scholar
  33. Miller P. (2014). What does adaptive design mean to you? https://www.census.gov/fedcasic/fc2014/ppt/keynote_miller.pdf Google Scholar
  34. Neyman J. (1938). Contribution to the theory of sampling human populations. Journal of the American Statistical Association 33(201):101–116.CrossRefGoogle Scholar
  35. Peytchev A. (2014). Models and interventions in adaptive and responsive survey designs. DC AAPOR, http://dc-aapor.org/ModelsInterventionsPeytchev.pdf
  36. Potter F. J., Iannacchione V. G., Mosher W., Mason R., Kavee J. A. (1998). Sample design, sampling weights, imputation, and variance estimation in the 1995 National Survey of Family Growth. Vital and Health Statistics, National Center for Health Statistics 124(2).Google Scholar
  37. Rao J. N. K. (1973). On double sampling for stratification and analytical surveys (Corr: V60 p669). Biometrika 60:125–133.MathSciNetCrossRefGoogle Scholar
  38. RTI International. (2012). SUDAAN Language Manual, Release 11.0. Research Triangle Park, NC.Google Scholar
  39. Rust K., Graubard B., Fuller W. A., Stokes S. L., Kott P. S. (2006). Finite population correction factors (Panel Discussion). In: Proceedings of the Survey Research Methods Section, American Statistical Association, ResearchGate [Accessed 14-Feb-2018]. https://www.researchgate.net/publication/251618326_Finite_Population_Correction_Factors_Panel_Discussion
  40. Särndal C., Lundström S. (2005). Estimation in Surveys with Nonresponse. John Wiley & Sons, Inc., Chichester.CrossRefGoogle Scholar
  41. Särndal C., Swensson B., Wretman J. (1992). Model Assisted Survey Sampling. Springer, New York.CrossRefGoogle Scholar
  42. Schouten B., Peytchev A., Wagner J. (2017). Adaptive Survey Design. Chapman and Hall/CRC.CrossRefGoogle Scholar
  43. Singh A. C., Dever J. A., Iannacchione V. G. (2004). Composite response rates for surveys with nonresponse follow-up. In: Proceedings of the Survey Research Methods Section, American Statistical Association, pp 4343–4350.Google Scholar
  44. Singh A. C., Dever J. A., Iannacchione V. G., Chen S. (2005). Efficient estimation of response rates when a small subsample of nonrespondents is selected for follow-up conversion. In: Federal Committee on Statistical Methodology (FCSM) Conference, Arlington, VA, URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.2189&rep=rep1&type=pdf
  45. Tourangeau R., Brick J. M., Lohr S. L., Li J. (2017). Adaptive and responsive survey designs: A review and assessment. Statistics in Society, Series A 180(1):203–223, URL http://onlinelibrary.wiley.com/doi/10.1111/rssa.12186/full MathSciNetCrossRefGoogle Scholar
  46. Valliant R. (1993). Poststratification and conditional variance estimation. Journal of the American Statistical Association 88:89–96.MathSciNetzbMATHGoogle Scholar
  47. Valliant R. (2004). The effect of multiple weight adjustments on variance estimation. Journal of Official Statistics 20:1–18.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Richard Valliant
    • 1
    • 2
  • Jill A. Dever
    • 3
  • Frauke Kreuter
    • 2
    • 4
  1. 1.University of MichiganAnn ArborUSA
  2. 2.University of MarylandCollege ParkUSA
  3. 3.RTI InternationalWashington, DCUSA
  4. 4.University of MannheimMannheimGermany

Personalised recommendations