Applied Aspects of Dissipative Structuring Theory to the Nonequilibrium Geological Environment

  • Oleg V. PetrovEmail author
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)


The manifestation of the wave properties of matter in the processes of spontaneous structuring of density-unstable masses, originally described as a natural phenomenon characteristic of both the nonequilibrium density-unstable laboratory physical models, and the geological planetary layers and upper horizons of the Earth’s crust, is the basis for new approaches to geological mapping and to the interpretation of geological and geological-geophysical data at all stages of their processing.


  1. Khain V.E. Regional geotectonics. M.: Nedra; 1971. (In Russ.).Google Scholar
  2. Anokhin V.M. Global disjunctive network of the Earth: structure, origin and geological significance. SPb.: Nedra; 2006. (In Russ.).Google Scholar
  3. Mandelbrot B.B. Fractals: Form, Chance and Dimension. San Francisco: W.H. Freeman; 1977.Google Scholar
  4. Mirlin E.G. Fractal discreteness of the lithosphere and geodynamics. Dokl. RAN. 2001; 379(2):231–234. (In Russ.).Google Scholar
  5. Vadkovskii V.N., Sokolov S.D., Zakharov V.S. et. al. Accretionary tectonics and fractal dimensionality. The abstracts of the conference “Geofizicheskie chteniya im. V.I. Fedynskogo”. M.: GEOS; 2002:57–58. (In Russ.).Google Scholar
  6. Malinverno A. Fractals and ocean floor topography. A review and a model. Fractals in the Earth Sciences. Ed. by C.C. Barton and P.R. La Pointe. NV, Plenum Press; 1995.Google Scholar
  7. Dubois J., Cheminee J.L. Fractal analysis of eruptive activity of some basaltic volcanoes. J. Volcanology and Geothermal Res. 1991; 45(3–4):197–208.CrossRefGoogle Scholar
  8. Sherman S.I., Gladkov A.S. Fractals in studies of faulting and seismicity in the Baikal rift zone. Tectonophysics. 1999; 308:133–142.CrossRefGoogle Scholar
  9. Gzovskii M.V. Mathematics in geotectonics. M.: Nedra; 1971:97–99. (In Russ.).Google Scholar
  10. Nikolaev N.I. Neotectonics of USSR. Proceedings of the commission for the study of the Quaternary period. M. L.: AN SSSR. 1949; 8. (In Russ.).Google Scholar
  11. Gerasimov N.P. Experience in the geomorphological interpretation of the general scheme of the USSR geological structure. Problemy fizicheskoi geografii. AN SSSR. 1946; 12:33-46. (In Russ.).Google Scholar
  12. Meshcheryakov Yu. A. The main elements of the Earth’s morphological structure and the problem of its origination. Izv. AN SSSR. Ser. geogr. 1957; 4:3–15. (In Russ.).Google Scholar
  13. Filosofov V.P. Remarks on the theory and practice of the morphometric method. Morphometric method in geological studies. Saratov: Sarat. SU; 1963:249–261. (In Russ.).Google Scholar
  14. Piotrovskii V.V. The use of morphometry to study the relief and structure of the Earth. Earth in the Universe M.: Mysl’; 1964: 278–297. (In Russ.).Google Scholar
  15. Nikol’skii Yu. I. Map of the anomalous gravitational field of Russia and the adjacent offshore areas. Geological Atlas of Russia. Section 2. Geological structure and geophysical characteristics of subsoil. M.-SPb.; 1996:35–51. (In Russ.).Google Scholar
  16. Odesskii I.A. Rotational-pulsation regime of the Earth and its geological consequences. SPb.: Politekhn. un-t; 2005. (In Russ.).Google Scholar
  17. Petrov O.V., Movchan I.B. Self-similarity and dimension in the dissipative structuring of the Earth. Regional geology and metallogeny. 2003; 19:33–47. (In Russ.).Google Scholar
  18. Landau L.D., Lifshits E.M. Theoretical physics. Fluid dynamics. M.: Nauka; 1988. (In Russ.).Google Scholar
  19. Strakhov V.N. Basic ideas and methods of extracting information from the data of gravitational and magnetic observations. Collection of articles “Theory and technique of interpretation of gravitational and magnetic anomalies” M.: IFZ; 1979:146–264. (In Russ.).Google Scholar
  20. Serkerov S.A. Spectral analysis in gravity and magnetic prospecting. M.: Nedra; 1991. (In Russ.).Google Scholar
  21. Petrov O.V., Movchan I.B., Yakovleva A.A. Interpretation of the gravitational field along the AR-1 profile on the basis of wave analogies with the density unstable media. Regional geology and metallogeny. 2006;28:174–180. (In Russ.).Google Scholar
  22. Strakhov V.N. On some estimates of the depth of occurrence of perturbing masses. Bulletin of the Academy of Sciences of the USSR. Geophysics Series. 1963; 1:90–109. (In Russ.).Google Scholar
  23. Strakhov V.N. On the state and problems of the mathematical theory of the interpretation of gravitational and magnetic anomalies. Izvestiya of the Academy of Sciences of the USSR. Physics of the Solid Earth. 1970; 5:112–119. (In Russ.).Google Scholar
  24. Strakhov V.N. The formation of a new paradigm is the destruction of the prevailing stereotype of thinking (on the example of gravimetry and magnetometry). Izvestiya, Physics of the Solid Earth. 2002; 3:3–20. (In Russ.).Google Scholar
  25. Petrishchevskii A.M. Statistical gravitational models of the lithosphere of the Russian Far East. Published summary of the Doctor’s dissertation. M.: 1990. (In Russ.).Google Scholar
  26. Petrishchevskii A.M. Gravitational autocorrelation indicators of deep geological structures. Russian Journal of Pacific Geology. 2004; 23(4):13–24. (In Russ.).Google Scholar
  27. Lebedev A.N., Petrov A.V. Statistical sounding of geofields. Proceedings of Higher Schools. Geology and Exploration. 2001; 3:106–110. (In Russ.).Google Scholar
  28. Berlyand N.G., Roze E.N. The appliance of correlation analysis for classification of potential fields. Geomagnetism and Aeronomy. 1971; 2:43–48. (In Russ.).Google Scholar
  29. Serkerov S.A. The application of gravity data and magnetic prospecting for tectonic zoning. Use of geological and geophysical data for studying regional tectonics of oil and gas bearing areas. M.: Nedra; 1976:36–61. (In Russ.).Google Scholar
  30. Petrishchevskii A.M., Demura G.V. Gravitational sounding of the Western Pacific continent-ocean transition zones. Tez. dokl. III Tikhookean. shkoly. Ch. 2. DVO AN SSSR. Vladivostok; 1987:16–18. (In Russ.).Google Scholar
  31. Petrishchevskii A.M. Statistical gravitational models of the lithosphere of the Russian Far East. Vladivostok: Dal’nevost. un-t; 1988. (In Russ.).Google Scholar
  32. Krivtsov A.N. While understanding how the deposits originated, do we know where to search for them? Otech. geologiya. 2006; 5:117–119. (In Russ.).Google Scholar
  33. Bogatskii V.V. Wave mechanism of formation of ore-localising structures of magnetite deposits of the Siberian platform. Geology of Ore Deposits. 1977; 19(3):3–18. (In Russ.).Google Scholar
  34. Vityaz’ V.N. Periodicity of location of geological structures of Siberian platform areas. M.: Nauka; 1982. (In Russ.).Google Scholar
  35. Kvet R., Nemets V. Symmetry of equidistant planetary discontinuous systems. Structural symmetry of geological bodies. M.: 1976; 2:8–9. (In Russ.).Google Scholar
  36. Nemets V. Regularity of geological structures - mathematical geology - geodynamics. Internal geodynamics. General questions of the internal geodynamics. L.: 1972; 1:32–33. (In Russ.).Google Scholar
  37. Baryshev A.N. Periodic location of diamondiferous systems and related problems of diamond geology. Otech. geologiya. 2006; 6:20–35. (In Russ.).Google Scholar
  38. Abukova L.A., Kartsev A.A. Fluid systems of sedimentary oil-and-gas bearing basins. Otech. geologiya. 1999; 2:11–16. (In Russ.).Google Scholar
  39. Androsov E.A., Verzhak V.V., Larchenko V.A., Minchenko G.V. About the structural control of the location of kimberlite bodies (on the example of the Arkhangelsk diamond province). The geology of diamonds is the present and future of geology: to the 50th anniversary of Mirny and the diamond mining industry in Russia. Collection of articles. Voronezh; 2005:31–43. (In Russ.).Google Scholar
  40. Sablukov S.M. Diamond depositaries of the Russian North. Science in Russia. 2001; 1:82–88. (In Russ.).Google Scholar
  41. Petrov O.V. Crystallization of natural sulphide melts and stages of copper-nickel ore formation. Scientific work collection of PGO “Sevmorgeologiya” “Forecasting and evaluation of the nickel content of new ore areas in the north of the Siberian Platform”. L.; 1983:95–99. (In Russ.).Google Scholar
  42. Pupin J.P. Contrib. Mineral. Petrol. 1980; 73:207–220.Google Scholar
  43. Kinny P.D., Dawson J.B. Nature. 1992; 360:726–728.CrossRefGoogle Scholar
  44. Hoskin P.W.O. Trace element composition of hydrotermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geohimica et Cosmohimica Acta. 2005; 69:637–648.CrossRefGoogle Scholar
  45. Kats Ya.G., Poletaev A.I., Sulidi-Kondrat’ev E.D. Ring structures of the face of the planet. (New in life, science and technics. Ser. “Nauki o Zemle”, № 5). M.: Znanie, K 62; 1989. (In Russ.).Google Scholar
  46. Sboev V.M. Investigation of microseismic processes occurring in an rock massifs of underground mines. (Preprint № 25). Novosibirsk: IGD SO AN SSSR; 1988. (In Russ.).Google Scholar
  47. Popov V.I. Nuclear theory of the development of the Earth’s crust. Ed. B.F. Vasil’evskii. Tashkent: SSU; 1960. (In Russ.).Google Scholar
  48. Pavlovskii E.V., Markov M.S. Some general questions of geotectonics (About the irreversibility of the development of the Earth’s crust). M.: Tr. GIN. 1963; 93:9–53. (In Russ.).Google Scholar
  49. Wisser E. Mineralisation connection with dome structures in the North American Cordilleras. Problems of endogenous deposits. Issue 2. M.; 1964. (In Russ.).Google Scholar
  50. Popova G.Z. Ring and linear morphostructures of the Kazakh folded country. Alma-Ata: Nauka; 1966. (In Russ.).Google Scholar
  51. Favorskaya M.A. The issues of bonding mineralisation with magmatism. Itogi nauki. Geokhimiya. Mineralogiya. Petrografiya. 1969:55–83. (In Russ.).Google Scholar
  52. Salop L.I. The main features of the stratigraphy and tectonics of the Precambrian of the Baltic Shield. Collection of VSEGEI articles. L.; 1971; 175:3–87. (In Russ.).Google Scholar
  53. Tomson I.N., Favorskaya M.A. On the types of focal structures and the associated mineralisation. Regularities in the location of mineral resources. V. 10. M.: Nauka; 1973:49–63. (In Russ.).Google Scholar
  54. Solov’ev V.V. The mapping of central type morphostructures in forecasting and searching for deposits of endogenous mineral resources. Problems of geomorphological mapping. L.: ONTI VSEGEI; 1975:62–64. (In Russ.).Google Scholar
  55. Solov’ev V.V. The structures of the central type of the USSR territory according to geological and morphological analysis: app. to a map of morphostructures of the central type of the USSR territory. Scale 1:10 000 000. L.: VSEGEI; 1978. (In Russ.).Google Scholar
  56. Khudyakov G.I. Principal foundations of morphotectonic studies (on the example of studying the southern mainland part of the Soviet Far East). Published summary of the Doctor’s dissertation. Novosibirsk; 1974. (In Russ.).Google Scholar
  57. Khain V.E. The main issues of modern geology. 2nd edition. M.: Nauchnyi mir; 2003. (In Russ.).Google Scholar
  58. Bush V.A. Systems of transcontinental lineaments of Eurasia. Geotectonics. 1983; 3:15–31. (In Russ.).Google Scholar
  59. Glukhovskii M.Z., Kats Ya., Moralev V.M. About nuclears of the world continents. Proceedings of Higher Schools. Geology and Exploration. 1983; 8:14–19. (In Russ.).Google Scholar
  60. Khudyakov G.N., Kulakov A.P., Ezhov B.V. et. al. Morphotectonic systems of the central type of Siberia and the Russian Far East. M.: Nauka; 1988. (In Russ.).Google Scholar
  61. Khudyakov G.I. New ways – new problems in geomorphology. Geomorphostructure of the Far East. Vladivostok; 1978:5–11. (In Russ.).Google Scholar
  62. Tomson I.N., Favorskaya M.A. Ore-controlling structures and principles of local forecasting of endogenic mineralisation. Sov. geologiya. 1968; 10:6–21. (In Russ.).Google Scholar
  63. Shcheglov A.D. Fundamentals of metallogenic analysis. M.: Nedra; 1976. (In Russ.).Google Scholar
  64. Favorskaya M.A. On some new trends in tectonic-magmatic and prognostic-metallogenic studies. Analysis of space images in tectonic magmatic and metallogenic studies. M.: Nedra; 1979:17–24. (In Russ.).Google Scholar
  65. Krasnyi L.I. The geology of the Baikal-Amur Mainline Region. M.: Nedra; 1980. (In Russ.).Google Scholar
  66. Petrov O.V., Movchan I.B., Yakovleva A.A., A.A. The method of automated structural interpretation of space images. Regional geology and metallogeny. 2005; 23:105–114. (In Russ.).Google Scholar
  67. Davis J. Statistics and analysis of geological data. M.: Mir; 1977. (In Russ.).Google Scholar
  68. Egorov A.S. Deep structure and geodynamics of the lithosphere of Northern Eurasia. Published summary of the Doctor’s dissertation. SPb.; 2000. (In Russ.).Google Scholar
  69. Turner J. Buoyancy effects in fluids. M.: Mir; 1977. (In Russ.).Google Scholar
  70. Sherman S.I., Sorokin A.P., Cheremnykh A.V. A new approach to the tectonic zoning of the Amur region according to the fractal dimensionality of the crustal faults. Dokl. RAN. 2001; 381(3):1–5. (In Russ.).Google Scholar
  71. Baryshev A.M. The position of the largest ore regions and nodes in the system of advective structures of the Earth. Otech. geologiya. 2001; 2:6–11. (In Russ.).Google Scholar
  72. Baryshev A.M. Tectonic and tectonophysical conditions for the formation of small intrusions. Rudy i metally. 2001; 6:19–26. (In Russ.).Google Scholar
  73. Tveritinov Yu.I., Tveritinova T.Yu., Brant S.B. et al. Forecasting gold mineralisation in the south of Eastern Siberia and the Far East: geological and isotope-geochemical aspects. Irkutsk: In-t zemnoi kory SO RAN; 2006. (In Russ.).Google Scholar
  74. Oganezov A.V. Method of Determining Spatial Coordinates of Geological Formations. Pat. RF: RU 2097794 C1. 11/27/97 (In Russ.).Google Scholar
  75. Khain V.E., Koronovskiy N.V. Planet Earth. From the Nucleus to the Ionosphere: Coursebook. M.: KDU; 2007. (In Russ.).Google Scholar
  76. Kirsanov A. A. [et al.]. Landsat 7 multispectral data: modern multi-purpose remote basis for geological maps and geological exploration / Regional Geology and Metallogeny. 2005; 24:60–66. (In Russ.).Google Scholar
  77. Petrov O.V., Movchan I. B., Yakovleva A. A. Interpretation of the gravity field along the AP-1 profile based on wave analogies with density-unstable media. Regional Geology and Metallogeny. 2006; 28:174–180. (In Russ.).Google Scholar
  78. Gravimetric Map шт 1:2.5 M USSR/ Edited by Stepanov P.P., Yanushevich M.A. Moscow: VNIIgeofizika; 1999. (In Russ.).Google Scholar
  79. Central Type Morphotectonic Systems in Siberia and the Far East. Ed.-in-chief V.V. Soloviev. – M .: Nauka; 1988. (In Russ.).Google Scholar
  80. Morphostructural Studies: Theory and Practice. Ed.-in-chief N.V. Vasilkovsky. M.: Nauka; 1985. (In Russ.).Google Scholar
  81. Metallogeny of Hidden Lineaments and Convergent Structures / I.N. Thomson [et al.]. M.: Nedra; 1984. (In Russ.).Google Scholar
  82. Metallogenic Analysis in Activation Areas (Case study: Transbaikalia). Ed.-in-chief Shatalov E.T.. M .: Nauka; 1977. (In Russ.).Google Scholar
  83. Geological Metallogenic Map of the World 1:15M: Explanatory Note in 4 Parts. Part 1: Geology and metallogeny of continents, transitals and the World Ocean / Krasny L.I. [et al.]. St. Petersburg: VSEGEI Cartographic Factory Publishing House; 2000. (In Russ.).Google Scholar
  84. Geological Metallogenic Map of the World 1:15M: Explanatory Note in 4 Parts. Part 2: Mineral resources of continents and active transitals. Edited by Krasny L.I. St. Petersburg: VSEGEI Cartographic Factory Publishing House; 2000. (In Russ.).Google Scholar
  85. Geological Metallogenic Map of the World 1:15M. Expl. Note in 4 parts. Part 3: Oil resources of continents and transitals. Geological and economic assessment / Nazarov V.I. [et al.]. St. Petersburg: VSEGEI Cartographic Factory Publishing House; 2000. (In Russ.).Google Scholar
  86. Geological Metallogenic Map of the World 1:15M. Expl. Note in 4 parts. Part 4: Mineral resources of the oceans / Datsenko V.A. [et al.]. S.-Petersburg: VSEGEI Cartographic Factory Publishing House; 2000.(In Russ.).Google Scholar
  87. Tsuboi S. Gravity. George Allen and Urwin (Publishers) Ltd. (London), 1983. 254 p.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Russian Geological Research Institute (VSEGEI)St. PetersburgRussia

Personalised recommendations