Fractal Hierarchies and Paleogeodynamic Reconstructions

  • Oleg V. Petrov
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)


From the standpoint of the material manifestation of wave properties in the processes of spontaneous structuring of unstable masses, the essence of the new general geological paradigm follows from the discovery of the colossal global structures of the Earth’s gravitational instability of G-hexagon type, exhibiting immersion in the centre and emersion in the marginal parts of the deep mantle substrate in the eastern hemisphere, and L-hexagon type, with emersion in the centre and immersion in the marginal parts of the deep mantle substrate in the western hemisphere, the basis of which development is explained in terms of wave processes.


  1. Aplonov S.V. Paleodynamics of the West Siberian Plate. Sov. geologiya. 1989; 7:27–36. (In Russ.).Google Scholar
  2. Avetisov G.P. Seismicity and deep structure of the Earth’s crust in the continental continuation of the Middle Arctic belt of earthquakes (the Laptev Sea and the Novosibirsk Islands). Published summary of the Candidate’s dissertation. L.: LGU; 1979. (In Russ.).Google Scholar
  3. Barbey P., Condert J., Morean B. et al. Petrogenesis and evolution of an Early Proterozoic orogenic belt: the Granulite belt of Lapland and Beloniorides (Fennoscandia). Bull. Geol. Soc. Finl. 1984; 56(1, 2):161–187.CrossRefGoogle Scholar
  4. Belov A.A. Tectonic development of the Alpine folded region in the Paleozoic. M.: Nauka; 1981. (In Russ.).Google Scholar
  5. Borukaev Ch.B. Comparative tectonics of the shields of Laurentia and Gondwana. Russian geology and geophysics. 1979; 3:13–24. (In Russ.).Google Scholar
  6. Borukaev Ch.B. Precambrian structure and plate tectonics. Novosibirsk: Nauka; 1985. (In Russ.).Google Scholar
  7. Bozhko N.A. Geodynamic inversion in the polar systems of the northern and southern hemispheres of the Earth. Moscow University Geology Bulletin. 1992; 1:27–38. (In Russ.).Google Scholar
  8. Bozhko N.A. Geodynamic inversion in polar systems of the northern and southern hemispheres of the Earth. Bulletin of Moscow State University. Series 4, Geol. 1992; 1: pp. 27-38. (In Russ.).Google Scholar
  9. Bray W.C. A periodic reaction in homogeneous solution and its reaction to catalysis. J. Amer. Chem. Soc. 1921; 43(6):1262–1267.CrossRefGoogle Scholar
  10. Brooks M. Some aspects of the Paleogene evolution of Western Britain in the context of an underlying mantle hot spot. J. of Geology. 1973; 81(1):81–88.CrossRefGoogle Scholar
  11. Brun J.P. The clasterridge pattern of mantled gneiss domes in Eastern Finland: evidence for largescale gravitational instability of the Рroterozoic crust. Earth and Planet. Sci. Lett. 1980; 47: 441–449.CrossRefGoogle Scholar
  12. Dixon J. M. Structural Geology and Plate Tectonics. M.: Mir; 1991. (In Russ.).Google Scholar
  13. Dziewonski A.M., Woodhouse J.H. Threedimensional Earth structure and mantle convection. Abstracts. 1989; 1(28th IGC):427–428.Google Scholar
  14. Early history of the Earth. Ed. B. Windley. M.: Mir; 1980. (In Russ.).Google Scholar
  15. Friend C.R.L. The Origin of the Closepet granites and the implications for the crustal evolution of Southern Karnataha. J. Geol. Soc. India. 1984; 25(2):73–84.Google Scholar
  16. Glukhovskii M.Z. Geological basement evolution of the ancient platformes. M.: Nedra; 1990. (In Russ.).Google Scholar
  17. Glukhovskii M.Z., Moralev V.M., Kuz’min M.I. Hot belt of the early Earth and its evolution. Geotectonics. 1994; 3:3–15. (In Russ.).Google Scholar
  18. Grachev A.F., Fedorovskii V.S. Greenstone Precambrian belts: rift zones or island arcs? Geotectonics. 1980; 5:3–24. (In Russ.).Google Scholar
  19. Heezen B.C., Fornari D.J. Geological map of the Pacific Ocean. Eos. Trans. Amer. Geophys. Union. 1976; 57(4):264.Google Scholar
  20. Hynes A. Stability of oceanic tectonosphere—a model for Early Proterozoic intercratonic orogeny. Earth and Planet. Sci. Lett. 1982; 61:333–345.CrossRefGoogle Scholar
  21. Khain V.E. Paleozoic stage of the development of the earth’s crust. Proceedings of Higher Schools. Geology and exploration. 1989a; 9:3–15. (In Russ.).Google Scholar
  22. Khain V.E. Stratification of the Earth and multilevel convection as the basis of a truly global geodynamic model. DAN SSSR. 1989b; 308(6):1437–1440. (In Russ.).Google Scholar
  23. Khain V.E. Regional tectonics. Extra-Alpine Asia and Australia. M.: Nedra; 1979. (In Russ.).Google Scholar
  24. Khain V.E., Bozhko N.A. Historical Geotectonics, the Precambrian. M.: Nedra; 1988. (In Russ.).Google Scholar
  25. Kinsman D.J. Salt floors to geosynclines. Nature. 1975; 255(5507):375–378.CrossRefGoogle Scholar
  26. Kontinen A. An Early Proterozoic ophiolite, the Jormua maficultramafic complex, Northeastern Finland. Precambrian Res. 1987; 35:313–342.CrossRefGoogle Scholar
  27. Kumazawa M., Maruyama S. Whole Earth tectonics. J. Geol. Soc. Japan. 1994; 100(1):81–102.CrossRefGoogle Scholar
  28. Larson R.L., Olson P. Mantle plumes control magnetic reversal frequency. Earth and Planet. Sci. Lett. 1991; 3:437–447.CrossRefGoogle Scholar
  29. Laz’ko E.M., Sivoronov A.A., Bobrov A.B. The problem of the tonalite layer in the granite-greenstone areas. Izv. AN SSSR. Ser. Geol; 1982. (In Russ.).Google Scholar
  30. Maruyama S., Kumazawa M., Kawakami S. Towards a new paradigm on the Earth’s dynamics. J. Geol. Soc. Japan. 1994; 100(1):1–3.CrossRefGoogle Scholar
  31. Milanovsky E.E., Rifting evolution in geological history. Tectonophysics. 1987; 143 (1–3):103–118.CrossRefGoogle Scholar
  32. Morgan J.S. The periodic evolution of carbon monoxide. J. Chem. Soc. London, Trans. 1916; 109:274–283.CrossRefGoogle Scholar
  33. Nikolaev N.I. Neotectonics and geodynamics of the lithosphere. M.: Nedra; 1988. (In Russ.).Google Scholar
  34. Paleotectonic maps of Gondwana. Ed. N.A. Bozhko, V.E. Khain. M.; 1987. (In Russ.).Google Scholar
  35. Picard C., Lamothe D., Piboul M., Oliver R. Magmatic and geotectonic evolution of a Proterozoic oceanic basin system: the Cape Smithn Thrust-Fold Belt (New Quebec). Prec. Res. 1990; 47:223–249.CrossRefGoogle Scholar
  36. Piper J.D.A. The Precambrian palaeomagnetic records for the Proterozoic Supercontinent. Earth Planet. Sci. Lett. 1982; 55(1):61–89.CrossRefGoogle Scholar
  37. Pogrebitskii Yu.E. Geodynamic system of the Arctic Ocean and its structural evolution. Sov. geologiya. 1976; 12:3–12. (In Russ.).Google Scholar
  38. Pushcharovskii Yu.M. Selected works. Tectonics of the Earth. Etudes in 2 volumes. Vol. 1: Tectonics and geodynamics. Geol. in-t. M.: Nauka; 2005. (In Russ.).Google Scholar
  39. Pushcharovskii Yu.M. Tectonics of the oceans and nonlinear geodynamics. Dokl. RAN. 1992; 324(1):157–161. (In Russ.).Google Scholar
  40. Ronkina Z.Z., Vishnevskaya T.N. Glaucophane in the sedimentary strata of the Western part of the Soviet Arctic. Sov. geologiya. 1982; 2:90–93. (In Russ.).Google Scholar
  41. Rudich E.M. Moving continents and the evolution of the ocean bed. M.: Nedra; 1983. (In Russ.).Google Scholar
  42. Saleeby J.B. Accretionary tectonics of the North American. Earth Planet. Sci. Lett. 1983; 15:45–73.CrossRefGoogle Scholar
  43. Schwerdtner W.M. Salt stocks as natural analogues of Archaean gneiss diapers. Geol. Rundshau. 1982; 71:370–379.CrossRefGoogle Scholar
  44. Schwerdtner W.M., Sutcliffe R.H., Troeng B. Patterns of total strain within the crustal regions of immature diapers. Canad. J. Earth Sci. 1978; 15:1437–1447.CrossRefGoogle Scholar
  45. The Siberian platform. The geological structure of the USSR and the regularities of the location of minerals. V. 4. Ed. N.S. Malich, V.L. Masaitis, V.S. Surkov. L.: Nedra; 1987. (In Russ.).Google Scholar
  46. Sivoronov A.A. Formations and origin of the Lower Precambrian greenstone complexes of the East European Platform. Published summary of the Doctor’s dissertation. M.; 1988. (In Russ.).Google Scholar
  47. Stratigraphic code of Russia. 3rd editon. Ed. A.I. Zhamoida. SPb: VSEGEI; 2006. (In Russ.).Google Scholar
  48. Structural Geology and Plate Tectonics. In three volumes. V. 1-2. / Edited by K. Seifert. M.: Mir; 1991. (In Russ.).Google Scholar
  49. Surkov V.S., Zhero O.G. The basement and development of the platform cover of the West Siberian plate. M.: Nedra; 1981. (In Russ.).Google Scholar
  50. Talbot C.J. Thermal convection below the solidus in a mantled gneiss dome, Fungwi Reserve, Rhodesia. J Geol Soc 1971; 127(4):377–410CrossRefGoogle Scholar
  51. Tectonics of Continents and Oceans: Explanatory Note to the International Tectonic map of the World. 1:15 000 000. M.: Nauka; 1988. (In Russ.).Google Scholar
  52. Turcotte D., Schubert J. Geodynamics: geological applications of the physics of continuous media. M.: Mir; 1985. (In Russ.).Google Scholar
  53. Veevers J.J. Middle-late triassic (230 Ma) singularity in the stratigraphic and magmatic history of the Pangean heat anomaly. Geology. 1989; 17:784–787.CrossRefGoogle Scholar
  54. Vogt P.R. Evidence for global synchronism in mantle plume convection and possible significance for geology. Nature. 1972; 20:338–342.CrossRefGoogle Scholar
  55. Vogt P.R. Global magmatic episodes: New evidence and implications for the steadystate midoceanic ridge. Geology. 1979; 7:93–98.CrossRefGoogle Scholar
  56. Vogt P.R. Plumes, subaxial pure flow and topography along the midoceanic ridge. Earth and Planet. Sci. Lett. 1976; 29:209–325.CrossRefGoogle Scholar
  57. Windley B. The evolving continents. London; 1985.Google Scholar
  58. Zhai M.G., Vang R.V., Zhoi W.J., Lu J. Geochemistry and evolution of the Qinguyan Archaean granitogreenstone terrain. Prec. Res. 1985; 27:37–62.CrossRefGoogle Scholar
  59. Zonenshain L.P., Kuz’min M.I. Deep geodynamics of the Earth. Russian geology and geophysics. 1993; 4:3–12. (In Russ.).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Russian Geological Research Institute (VSEGEI)St. PetersburgRussia

Personalised recommendations