Advertisement

Fractal Hierarchies of Dissipative Structures—Cellular Standing Internal Gravitational Waves in the Earth and Methods for Their Detection

  • Oleg V. PetrovEmail author
Chapter
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

The principal undertaking of the methods described in this work is to reveal multi-ordinal structures of gravitational instability—or dissipative structures of the Earth—and identify their typomorphic elements. The range of methodological approaches aimed at solving this issue is rather wide and includes: the analysis of seismic tomography data; maps of global geoid anomalies and gravitational potential; graphical and analytical methods for the decomposition of relief, figures representing the Earth’s gravitational field; the deciphering of space and aerial images; morphometric, structural-geomorphological and structural-geological investigations.

References

  1. Gerasimov N.P. Experience in the geomorphological interpretation of the general scheme of the USSR geological structure. Problemy fizicheskoi geografii. AN SSSR. 1946; 12:33–46. (In Russ.).Google Scholar
  2. Meshcheryakov Yu. A. The main elements of the Earth’s morphological structure and the problem of its origination. Izv. AN SSSR. Ser. geogr. 1957; 4:3–15. (In Russ.).Google Scholar
  3. Khudyakov G.I. Principal foundations of morphotectonic studies (on the example of studying the southern mainland part of the Soviet Far East). Published summary of the Doctor’s dissertation. Novosibirsk; 1974. (In Russ.).Google Scholar
  4. Khudyakov G.I., Ezhov B.V., Ishchenko A.A. On the content of the concept of “geological-geomorphological conformal complex” (to the creation of geomorphological structure classification). Morphostructure studies in the Far East. Vladivostok: DVNTs AN SSSR; 1983:40–47. (In Russ.).Google Scholar
  5. Aki K., Lee W.H.K. Determination of three dimensional velocity anomalies under a seismic array using first Parrival times from local earthquakes. 1. A homogeneous initial model. J. Geophys. Res. 1976; 81(23):4381–4399.CrossRefGoogle Scholar
  6. Dziewonski A.M., Hager B.H., O’Connell R.J. Largescale heterogeneities in the lower mantle. J. Geophys. Res. 1977; 82(2):239–255.CrossRefGoogle Scholar
  7. Ritzwoller M.H., Levshin A.L. Eurasian surface wave tomography; group velocities. J. Geophys. Res. Solid earth. 1998; 103(3):4839–4878.CrossRefGoogle Scholar
  8. Fukao Y., Maruyama S., Obayashi M., Inove H. Geologic implication of the whole mantle P-wave tomography. J. Geol. Soc. Japan. 1994; 100(1):4–23.CrossRefGoogle Scholar
  9. Su W.J., Woodward R.L., Dziewonski A.M. Degree 12 model of shear velocity heterogeneity in the mantle. J. Geoph.Res. 1994; 99(4):6945–6980.CrossRefGoogle Scholar
  10. Vasco D.W., Johnson L.R. Whole earth structure estimated from seismic arrival times. J. Geophys. Res. Solid earth. 1998; 103(2):2633–2672.CrossRefGoogle Scholar
  11. Resovsky J.S., Ritzwoller M.H. A degree 8 mantle shear velocity model from normal mode observations below 3 mHz. J. Geoph. Res. 1999:104(131): 993–1104.CrossRefGoogle Scholar
  12. Jordan P. The rheology of polimineralic rocks - an approach. Geol. Runschau. 1988; 77(1):285–294.CrossRefGoogle Scholar
  13. Durek J.J., Ritzwoller M.H., Woodhouse J.H. Constraining upper mantle anelasticity using surface wave amplitude anomalies. Geophys. J. Int. 1993; 114(2):249–272.CrossRefGoogle Scholar
  14. Cadek O., Yuen D.A., Steinbach V., Matyska C. Lower mantle thermal structure deduced from seismic tomography, mineral physics and numerical modelling. Earth and Planet. Sci. Lett. 1994; 121(3–4):385–402.Google Scholar
  15. Cadek O., Kyvalova H., Yuen D.A. Geodynamical implications from the correlation of surface geology and seismic tomographic structure. Earth and Planetary Sci. Letters. 1995; 136(3-)4: 615–627.CrossRefGoogle Scholar
  16. Romanowicz B. A global tomographic model of shear attenuation in the upper mantle. J. Geophys. Res. Solid earth. 1995; 100(7):12,375–12,394.CrossRefGoogle Scholar
  17. Perrot K., Tarits P., Goslin J. Regionalized comparison of global Earth models of seismic velocity, geoid and topography; implications on the geodynamics of ridges and subductions. Physics of the Earth and Planet. Inter. 1997; 99(1–2):91–102.CrossRefGoogle Scholar
  18. Yuen D.A., Cadek O., Chopelas A., Matyska C. Geophysical inferences of thermal-chemical structures in the lower mantle. Geophys. Res. Letters. 1993; 20(10):899–902.CrossRefGoogle Scholar
  19. Kawakatsu H., Niu F. Seismic evidence for a 920 km discontinuity in the mantle. Nature. 1994; 371(6495):301–305.CrossRefGoogle Scholar
  20. Kennet B.L.N., Bowman J.R. The velocity structure and heterogeneity of the upper mantle. Physics of the Earth and Planetary Interiors. 1990; 59(3):134–144.CrossRefGoogle Scholar
  21. Maruyama S., Kumazawa M., Kawakami S. Towards a new paradigm on the Earth’s dynamics. J. Geol. Soc. Japan. 1994; 100(1):1–3.CrossRefGoogle Scholar
  22. Anderson O.L. The temperature profile of the upper mantle. J. Geophys. Res. 1980; 85(12): 7003–7010.CrossRefGoogle Scholar
  23. Turcotte D., Schubert J. Geodynamics: geological applications of the physics of continuous media. M.: Mir; 1985. (In Russ.).Google Scholar
  24. Dziewonski A.M., Woodhouse J.H. Threedimensional Earth structure and mantle convection. Abstracts. 1989; 1(28th IGC):427–428.Google Scholar
  25. Nikolaev N.I. Neotectonics and geodynamics of the lithosphere. M.: Nedra; 1988. (In Russ.).Google Scholar
  26. Morelli A., Dziewonski A. The harmonic expansion approach to the retrieval of deep Earth structure. Seismic tomography. With applications in global seismology and exploration geophysics. Ed. Nolet G. Dordrecht. 1987; 251–274.Google Scholar
  27. Zhivago A.V. Morphostructure of the bottom of the southeast Pacific. Metalliferous sediments of the South-Eastern part of the Pacific Ocean. AN SSSR. In-t okeanologii. M.; 1979:8–47. (In Russ.).Google Scholar
  28. Aplonov S.V. Paleodynamics of the West Siberian Plate. Sov. geologiya. 1989; 7:27–36. (In Russ.).Google Scholar
  29. Kropotkin P.N., Efremov V.N. New evidence of plate tectonics theory. Geotectonics. 1994; 1:16–24. (In Russ.).Google Scholar
  30. Holmes A. Principles of physical geology. London; New York: T. Nelson and sons; 1944.Google Scholar
  31. Holmes A. Principles of physical geology. 2nd new and fully rev. ed. N/Y: Roland press; 1965.Google Scholar
  32. King L. Morphology of the Earth. M.: Progress; 1967. (In Russ.).Google Scholar
  33. Krasnyi L.I. Global divisibility of the lithosphere in terms of the geoblock concept. Sov. geologiya. 1984; 7:17–31. (In Russ.).Google Scholar
  34. Carey S.W. Searching for the laws of the development of the Earth and the Universe. M.: Mir; 1991. (In Russ.).Google Scholar
  35. Filosofov V.P. Remarks on the theory and practice of the morphometric method. Morphometric method in geological studies. Saratov: Sarat. SU; 1963:249–261. (In Russ.).Google Scholar
  36. Panov B.P. Quantitative characteristic of the river drainage. Tr. GGI. 1948; 4:122–149. (In Russ.).Google Scholar
  37. Filosofov V.P. Experience in the genetic classification of continental plains. Scientific notes. V. 65. Saratov: Sarat. SU; 1959a:189–200. (In Russ.).Google Scholar
  38. Filosofov V.P. A short guide to the morphometric method of searching for tectonic structures. Saratov: Sarat. SU; 1980. (In Russ.).Google Scholar
  39. Filosofov V.P. The order of valleys and their use in geological research. Scientific annual collection for 1955. Saratov: Sarat. SU; 1959b:38–40. (In Russ.).Google Scholar
  40. Egorkin A.V., Zyuganov S.K., Chernyshev N.M. The upper mantle of Syberia. 27-i Mezhdunar. geol. kongr. Moskva, 4-14 avg., 1984, sekts. S. 08, Geofizika. Dokl. M. 1984; 8:27–42. (In Russ.).Google Scholar
  41. Avetisov G.P., Golubkov V.S. The deep structure of the central part of Norilsk ore region according to earthquake converted-wave method and DSS data. Sov. geologiya. 1984; 10:86–94. (In Russ.).Google Scholar
  42. Grachev A.F., Demenetskaya R.M., Karasik A.M. The Mid-Atlantic Ridge and its continental continuation. Geomorphology RAS. 1970; 1:42–45. (In Russ.).Google Scholar
  43. Mandelbrot B.B. Statistical methodology for nonperiodic cycles: from the covariance to R/S analysis. Annals of Economic and Social Measurement. 1972; 1(3):257–288.Google Scholar
  44. Haken H. Synergetics. M.: Mir; 1980. (In Russ.).Google Scholar
  45. Fractals in Science. Berlin.: Springer Verlag; 1995.Google Scholar
  46. Fractals and Chaos in the Earth Sciences. Ed. by Sammis C.G., Saito M., King G.C.P. Basel.: Birkhauser; 1993.Google Scholar
  47. Turcotte D.L. Fractal and chaos in geology and geophysics. 2nd edition. N/Y: Cambridge University Press; 1997.Google Scholar
  48. Feder J. Fractals. M.: Mir; 1991. (In Russ.).Google Scholar
  49. Makarenko N.G. Fractals, multifractal measures and attractors. Nonlinear waves. 2002: collection of articles. N. Novgorod: In-t prikl. fiziki RAN. 2003:381–394. (In Russ.).Google Scholar
  50. Egorov D.G. Information measures for the analysis of geological self-organising systems. SPb.: Nauka; 1997. (In Russ.).Google Scholar
  51. Mandelbrot B. Self-affine fractal sets. Fractals in physics. M.: Mir. 1988:9–47. (In Russ.).Google Scholar
  52. Smirnov B.M. Physics of fractal clusters. M.: Nauka; 1991. (In Russ.).Google Scholar
  53. Polikarpov M.I. Fractals, topological defects and confinement in lattice calibration theories. Uspekhi Fizicheskikh Nauk. 1995; 165:627. (In Russ.).CrossRefGoogle Scholar
  54. Zel’dovich Ya.S., Sokolov D.D. Fractals, similarity, intermediate asymptotics. Physics-Uspekhi (Advances in Physical Sciences). 1985; 146(3):493–506. (In Russ.).Google Scholar
  55. Ten A., Yuen D.A. et al. Fractal features in miing of nonNewtonian and Newtonian mantle convection. Earth and Planet. Sci. Lett. 1997; 148(1–4):401–414.CrossRefGoogle Scholar
  56. Schulz S.S. Report on the work of the Dzharkent geological party in the summer of 1930 in the Dzhungarian Alatau. L.: Geolgiz; 1932. (In Russ.).Google Scholar
  57. Gerasimov I.P., Meshcheryakov Yu.A. Morphostructure and morphosculpture of the Earth's surface. Modern problems of geography. M.: Science; 1964: pp. 225–230.Google Scholar
  58. P.M. Goryainov, G.Yu. Ivanyuk, N.V. Sharov, (1997) Fractal analysis of seismic and geological data. Tectonophysics 269 (3-4):247–257CrossRefGoogle Scholar
  59. Chernyshev N.M. et al. Deep structure of the north West Siberian Plate from seismic data. Soviet Geology. 1978; 9: pp. 46–58. (In Russ.).Google Scholar
  60. T. YUKUTAKE, (1968) Two Methods of Estimating the Drift Rate of the Earth's Magnetic Field. Journal of geomagnetism and geoelectricity 20 (4):427–428CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Russian Geological Research Institute (VSEGEI)St. PetersburgRussia

Personalised recommendations