Advertisement

Physical and Mathematical Description of the Manifestation of Wave Properties of Matter in Thermodynamic and Dynamic Processes of Spontaneous Structuring of Density-Unstable Masses

  • Oleg V. Petrov
Chapter
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

The natural science of geology is in the first place a descriptive science; nevertheless, in this field a large body of accumulated empirical material is unified at the level of the fundamental laws of nature in the language of modern physics and mathematics. In this connection, we can state that with the development of various physical and mathematical methods for describing the processes of spontaneous structuring of density-unstable media, their wave nature becomes more and more evident regardless of the causes (whether thermodynamic or dynamic) of this instability.

References

  1. Graham A. Shear patterns in an unstable layer of air. Philos. Trans. Royal Soc. London. Ser. A. 1933; 232(714):285–296.CrossRefGoogle Scholar
  2. Palm E. J. Fluid Mech. 1960; 8.Google Scholar
  3. Segel L.A., Stuart J.T. On the question of the preferred mode in cellular thermal convection. J. Fluid Mech. 1962; 13(2):289–306.CrossRefGoogle Scholar
  4. Busse F.H. Nonlinear properties of thermal convection. Res. Prog. Phys. 1978; 41:1931–1965.CrossRefGoogle Scholar
  5. Karpov N.V., Kirichenko N.A. Oscillations, waves, structures. M.: Fizmatlit; 2001. (In Russ.).Google Scholar
  6. Saetzman B. Finite amplitude free convection as an initial value problem. Pt. 1. J. Atmosph. Scie. 1962; 19(4):329–341.Google Scholar
  7. Lorenz E. Deterministic nonperiodic flows. J. of Atmosph. Sc. 1963; 20:130–141.CrossRefGoogle Scholar
  8. Nikolis G., Prigogine I. Exploring Complexity. M.: Mir; 1990. (In Russ.).Google Scholar
  9. Poincaré H. About science. M.: Nauka; 1983. (In Russ.).Google Scholar
  10. Prigogine I.R., Stengers I. Time, chaos, quantum. On the solution of the paradox of time. M.: Editorial URSS; 2001. (In Russ.).Google Scholar
  11. Gibbs J.W. Elementary principles in statistical mechanics, developed with especial reference to the rational foundations of thermodynamics. New York: C. Scribner’s sons; 1902.Google Scholar
  12. Koopman B.O. Hamiltonian Systems and Transformation in Hilbert Space. Proc. Nat. Acad. Sci. USA. 1931; 17(5):315–318.CrossRefGoogle Scholar
  13. Prigogine I.R. Nonequilibrium statistical mechanics. Ed. N.D. Zubarev. M.: Mir; 1964. (In Russ.).Google Scholar
  14. Prigogine I.R. The end of certainty. Time, chaos and new laws of nature. Izhevsk: NITs “Regulyarnaya i khaoticheskaya dinamika”; 2000. (In Russ.).Google Scholar
  15. Thorpe S.A. On the shape of progressive internal waves. Philos. Trans. Royal Soc. London. Ser. A. 1968; 263(1145):563–614.CrossRefGoogle Scholar
  16. Giterman M.Sh., Shteinberg V.A. Izv. AN SSSR. MZhG. 1972; 2:55-61. (In Russ.).Google Scholar
  17. Landau L.D., Lifshits E.M. Theoretical physics. Fluid dynamics. M.: Nauka; 1988. (In Russ.).Google Scholar
  18. Turner J. Buoyancy effects in fluids. M.: Mir; 1977. (In Russ.).Google Scholar
  19. Davis S.H., Muller U., Dietsche C. Pattern selection in singlecomponent systems coupling Bénard convection and solidification. J. Fluid Mech. 1984; 144:133–151.CrossRefGoogle Scholar
  20. Nguyen T.H. et al. Influence of thermosolutal convection on the solidification front during upwards solidification. J. Fluid Mech. 1989; 204:581–597.Google Scholar
  21. Prandtl L. Hydroaeromechanics. 2nd ed. M.: IL.; 1951. (In Russ.).Google Scholar
  22. Bolt B.A. In the depths of the Earth: what do earthquakes tell. M.: Mir; 1984. (In Russ.).Google Scholar
  23. Kurdyumov S.P., Malinetskii G.G., Potapov A.B. Synergetics - new directions. M.: Znanie. 1989; 11. (In Russ.).Google Scholar
  24. Stork K., Muller U. Convection in boxes: an experimental investigations in vertical cylinders and annuli. J. Fluid Mech. 1975; 71(2):231–239.CrossRefGoogle Scholar
  25. Turcotte D., Schubert J. Geodynamics: geological applications of the physics of continuous media. M.: Mir; 1985. (In Russ.).Google Scholar
  26. Thi H.N., Billia B., Jamgotchian H. Influence of thermosolutal convection on the solidification front during upwards solidification. J. Fluid Mech. 1989; 204:581–597.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Russian Geological Research Institute (VSEGEI)St. PetersburgRussia

Personalised recommendations