Generality of the Wave Property Manifestation of Matter in Processes of Fractal Structuring and Generation of the Geometry of Density-Unstable Natural Formations

  • Oleg V. PetrovEmail author
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)


Among the many structural features appearing throughout the Universe, including the Earth and its surrounding layers, the attention of contemporary scientists is drawn to the spontaneous structuring of these natural systems and the geometric commonality of the emerging structural forms, i.e., in terms of their cellular (square, hexagonal, polygonal) geometry. The structural similarity of these forms is revealed to be independent of the nature and scale of their manifestation, a factor having already been emphasised by many researchers from a philosophical perspective (V. V. Piotrovsky, M. A. Sadovsky, Yu. M. Pushcharovsky, V. E. Khain, L. I. Krasny, etc.). This has led the scientific community towards the view that the external manifestations of the spontaneous structuring and redistribution of masses in nonequilibrium density distribution in natural systems may be explained in terms of a transphenomenal physical mechanism. This perception is strengthened still further by turning to the applied natural scientific fields of fluid dynamics and thermodynamics, oceanology, meteorology and geophysics, where the same geometric commonality of spontaneous structuring can be seen as underlying otherwise apparently scattered examples.


  1. Stokes G.G. On some cases of fluid motion. Philos. Mag. 1847; 31:136–137.Google Scholar
  2. Artyushkov E.V. About the physical causes of emergence of polygonal structures in soils. The issues of palaeogeography and morphogenesis in Polar countries and highlands. M.: MGU; 1964:109–130 (In Russ.).Google Scholar
  3. Artyushkov E.V. Formation of convective deformations in weakly-lithified sedimentary rocks. Izv. AN SSSR. Ser. geol. 1965; 12:79–101 (In Russ.).Google Scholar
  4. Kostyaev A.G. About the origin of clinoform and folded deformations of layers in quaternary sediments. The issues of palaeogeography and morphogenesis in Polar countries and highlands. M.: MGU; 1964:131–163 (In Russ.).Google Scholar
  5. Belousov V.V. Earth’s crust and upper mantle of the continents. M.: Nauka; 1966 (In Russ.).Google Scholar
  6. Palm E. J. Fluid Mech. 1960; 8.Google Scholar
  7. Bénard H. Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en regime permanent. Ann. Chem. Phys. 1901; 23:62–144.Google Scholar
  8. Koschmieder E.L. On convection under an air surface. J. Fluid Mech. 1967; 30(1):9–15.CrossRefGoogle Scholar
  9. Silverston P.L. Warmedurchgang in waagerechten Flussigkeitsschichten: Heft 1—2. Forschung im Ingenieurwesen. 1958; 24(1, 2):29–32, 59–69.Google Scholar
  10. Ramberg H. Instability of layered systems in the field of gravity, parts 1 and 2. Phys. Earth and Planet. Inter. 1968; 1:427–474.Google Scholar
  11. Ramberg H. Theoretical models of density stratification and diapirism in the Earth. J. Geophys. Res. 1972; 77:877–889.CrossRefGoogle Scholar
  12. Seyfert C.K. Convection and motion of plates. Structural geology and plate tectonics. T. 1. Mir; 1990. (in Russ.).Google Scholar
  13. Lebedeva N.B. Modelling the process of diapir dome formation. Sov. geologiya. 1956; 5:163–175 (In Russ.).Google Scholar
  14. Parker T.J., McDowell A.N. Model studies of saltdome tectonics. Amer. Assoc. Petroleum Geologists Bull. 1955; 39(12):2384–2470.Google Scholar
  15. Sycheva E., Mikhailova A.M. The mechanism of tectonic processes in an environment of rock density inversion. M.: Nedra; 1973 (in Russ.).Google Scholar
  16. Belousov V.V., Vikhert A.V., Goncharov M.A. et. al. Methods of modeling in structural geology. M.: Nedra; 1988 (In Russ.).Google Scholar
  17. Dixon J.M. Finite strain and progressive deformation in models of diapiric structure. Tectonoph. 1975; 28:89–124.CrossRefGoogle Scholar
  18. Talbot C.J. Inclined and asymmetric upwardmoving gravity structures. Tectonophysics. 1977; 43:159–181.CrossRefGoogle Scholar
  19. Schwerdtner W.M., Sutcliffe R.H., Troeng B. Patterns of total strain within the crustal regions of immature diapers. Canad. J. Earth Sci. 1978; 15:1437–1447.Google Scholar
  20. Rayleigh, John William Strutt (Baron). On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. 1916; 32:529–546.Google Scholar
  21. Tippelskirch H. Beitr. Phys. Atmosphere. 1956; 29:37.Google Scholar
  22. Busse F.H. Dissertation. Santa Monica (California). 1962.Google Scholar
  23. Busse F.H. Nonlinear properties of thermal convection. Res. Prog. Phys. 1978; 41:1931–1965.CrossRefGoogle Scholar
  24. Danes Z.F. Mathematical formulation of saltdome dynamics. Geophysics. 1964; 29:414–424.CrossRefGoogle Scholar
  25. Selig F. A theoretical prediction of salt dome patterns. Geophysics. 1965; 30:633–643.CrossRefGoogle Scholar
  26. Biot M.A., Ode H. Theory of gravity instability with variable overburden and compaction. Geophysics. 1965; 30: 213–227.CrossRefGoogle Scholar
  27. Fletcher R.C. Application of a mathematical model to the emplacement of mantled gneiss domes. Am. J. Sci. 1972; 272:197–216.CrossRefGoogle Scholar
  28. Turner J. Buoyancy effects in fluids. M.: Mir; 1977 (In Russ.).Google Scholar
  29. Gossard E.E., Hooke W.H. Waves in the atmosphere. Infrasound and gravitational waves in atmosphere - their origin and spreading. Ed. Golitsyn G.S. M.: Mir; 1978 (In Russ.).Google Scholar
  30. Artyushkov E.V. Geodynamics. M.: Nauka; 1979 (In Russ.).Google Scholar
  31. Golitsyn G.S. Convection study with geophysical applications and analogies. News and problems of science. L.: Gidrometizdat; 1980 (In Russ.).Google Scholar
  32. Zharikov V.N. Internal structure of the Earth and other planetes. M.: Nauka; 1983 (In Russ.).Google Scholar
  33. Myasnikov V.P., Fadeev V.E. Models of the evolution of the Earth and the terrestrial planets. M.: VINITI; 1980 (In Russ.).Google Scholar
  34. Pushcharovskii Yu.M., Novikov V.L., Savel’ev A.A., Fadeev V.E. Heterogeneity and convection in the tectonosphere. Geotectonics. 1989; 5:3–13 (In Russ.).Google Scholar
  35. Pushcharovskii Yu.M., Novikov V.L., Savel’ev A.A., Fadeev V.E. Heterogeneity and convection in the tectonosphere. Geotectonics. 1990; 5:3–8 (In Russ.).Google Scholar
  36. Pushcharovskii Yu.M. Selected works. Tectonics of the Earth. Etudes in 2 volumes. Vol. 1: Tectonics and geodynamics. Geol. in-t. M.: Nauka; 2005 (In Russ.).Google Scholar
  37. Tectonic stratification of the lithosphere and regional geological studies. Ed. Yu.M. Pushcharovsky, V.G. Trifonov. M.: Nauka; 1990 (in Russ.).Google Scholar
  38. Sorokhtin O.G., Ushakov S.A. Global evolution of the Earth. M.: MSU; 1991 (in Russ.).Google Scholar
  39. Turcotte D., Schubert J. Geodynamics: geological applications of the physics of continuous media. M.: Mir; 1985 (in Russ.).Google Scholar
  40. Fisher O. Physics of the Earth crust. 2nd ed. London; 1989.Google Scholar
  41. Gridds D.T. A theory of mountain building. Amer. J. Sci. 1939; 237:611–650.Google Scholar
  42. Hess H.H. History of ocean basin. Petrologies Studies. A volume of honor of A.F. Buddington. New York. 1962; 618–620.Google Scholar
  43. Holmes A. Radioactivity and Earth movements. Geol. Soc. Glasgow Trans. 1928; 28:559–606.Google Scholar
  44. McKenzie D.P. The Earth’s mantle. Sci. Amer. 1983; 249: 67–78.CrossRefGoogle Scholar
  45. Kanla W.M. Global gravity and mantle convection. Tectonophysics. 1972; 13:341–359.CrossRefGoogle Scholar
  46. Eskola P. The problem of mantled gneiss domes. Quart. J. geol. Soc. London. 1949; 104:461–476.CrossRefGoogle Scholar
  47. Kranck E.H. Deep structures and ultrametamorphism. Trans. N.Y. Acad. Sci. Ser. 2. 1954; 16(5):234–241.Google Scholar
  48. Belk R. Structural features of igneous rocks. M.: Gosgeoltekhizdat; 1946 (In Russ.).Google Scholar
  49. Buddington A.F. Granite emplacement with special reference to North America. Geol. Soc. Amer., Bull. 1959; 70(6):671–747.CrossRefGoogle Scholar
  50. Wegmann C.E. Zur Deutung der Migmatite. Geol. Rundsch. 1935; 26:307.Google Scholar
  51. La Fond Е.С. Internal wave motion and its geological significance. Mahadevan volume. A collection of geological papers in commemoration of the sixtyfirst birthday of Prof. C. Mahadevan. Hyderabad (India). 1961; 61–77.Google Scholar
  52. Belousov V.V. Some issues of deep tectonics. Ser. 4 geol. M.: MGU. 1960; 5:3–12 (In Russ.).Google Scholar
  53. Goncharov M.A. Density inversion in the Earth’s crust and folding processes. M.; 1979 (In Russ.).Google Scholar
  54. Ez V.V. Tectonics of the deep zones of the continental crust. M., Nauka; 1976 (In Russ.).Google Scholar
  55. Suvorov A.I. The newest global kinematics of the lithosphere (based on regional tectonic pairs. Geotectonics. 1978; 2:3–18 (In Russ.).Google Scholar
  56. Pushcharovskii Yu.M. Tectonics of the oceans and nonlinear geodynamics. Dokl. RAN. 1992; 324(1):157-161. (In Russ.).Google Scholar
  57. Pushcharovskii Yu.M. The Earth’s tectonosphere is a new vision. Russian Journal of Earth Sciences. 2000; 2(1):63–69 (In Russ.).Google Scholar
  58. Sadovskii M.A., Pisarenko V.F. Some ideas about the seismic process. M.: IFZ; 1982 (In Russ.).Google Scholar
  59. Sadovskii M.A. On the meaning and meaning of discreteness in geophysics. Discrete properties of a geophysical environment. M.: Nauka; 1989. (In Russ.).Google Scholar
  60. Suvorov A.I. Regional tectonic pairs as the basis of the internal structure of geosynclinal areas and platforms. DAN SSSR. 1976; 226(6) (In Russ.).Google Scholar
  61. Planet Earth. Encyclopedic reference book. Volume “Tectonics and geodynamics”. Ed. L.I. Krasnyi, O.V. Petrov, B.A. Blyuman. SPb.: VSEGEI; 2004. (In Russ.).Google Scholar
  62. Suvorov A.I. Tectonic stratification and tectonic movements in the continental lithosphere. Fundamental problems of general tectonics. M.: Nauchnyi mir; 2001:34–48 (In Russ.).Google Scholar
  63. Rasskazov S.V. Comparison of volcanism and the newest structures of hot spots of Yellowstone and Eastern Sayan. Russian Geology and Geophysics. 1994; 35:67–75 (In Russ.).Google Scholar
  64. Elsasser W.M. Viscous stratification of Earth and convection. Phys. Earth a. Planet. Inter. 1972; 6:198–204.Google Scholar
  65. Khain V.E. Plate tectonics: analysis of the current state. Moscow University Geology Bulletin. 1:3–10 (In Russ.).Google Scholar
  66. Shcheglov A.D. Nonlinear metallogeny. DAN SSSR. 1983; 271(6):1471–1474 (In Russ.)Google Scholar
  67. Shcheglov A.D. About some questions of nonlinear geology. Regional geology and metallogeny. 1995;4:5–15 (In Russ.).Google Scholar
  68. Kuznetsov O.L. Nonlinear geophysics. The issues of nonlinear gephysics. M.: ONTI VNIIYaGG; 1981:5–20 (In Russ.).Google Scholar
  69. Feder J. Fractals. M.: Mir; 1991 (In Russ.).Google Scholar
  70. Gramberg I.S., Goryainov I.N., Smekalov A.S., Melamud M.Kh., Goryainova G.I. Fractality of the salt-dome structures of the Gulf of Suez. Dokl. RAN. 1994; 336(1):80–83 (In Russ.).Google Scholar
  71. Mandelbrot B.B., Passoja D.E., Panllay A.L. Nature. 1984; 308(4):721– 722.CrossRefGoogle Scholar
  72. Maruyama S., Kumazawa M., Kawakami S. Towards a new paradigm on the Earth’s dynamics. J. Geol. Soc. Japan. 1994; 100(1):1–3.CrossRefGoogle Scholar
  73. Dziewonski A.M., Woodhouse J.H. Threedimensional Earth structure and mantle convection. Abstracts. 1989; 1(28th IGC):427–428.Google Scholar
  74. Giterman M.Sh., Shteinberg V.A. Izv. AN SSSR. MZhG. 1972; 2:55–61 [Giterman M.Sh., Shteinberg V.A. Izv. AN SSSR. MZhG. 1972; 2:55–61 (In Russ.)].Google Scholar
  75. Landau L.D., Lifshits E.M. Theoretical physics. Fluid dynamics. M.: Nauka; 1988. (In Russ.).Google Scholar
  76. Dixon J.M. Structural geology and plate tectonics. M.: Mir; 1991. (In Russ.).Google Scholar
  77. Ramberg H. Superposition of homogeneous strain and progressive deformation in rocks. Bull. Geol. Inst. Univ. Uppsala. Ser. 2.1976; 6: 35–67.Google Scholar
  78. Fidlin A.Ya. The Averaging method for systems of variable order and its use in studying the dynamics of vibro-impact systems: thesis for a candidate degree in physical and mathematical sciences: 01.02.01. State Technical University. St. Petersburg; 1992.Google Scholar
  79. Panin I.M., Panin M.I. Dynamic processes in the mountain range: Coursebook. M.: Publishing house of peoples’ friendship university of Russia; 1992. (In Russ.).Google Scholar
  80. Väyrynen H. Crystalline basement of Finland. M: IL; 1959.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Russian Geological Research Institute (VSEGEI)St. PetersburgRussia

Personalised recommendations