Araliaceae Jussieu, Gen. Pl.: 217 (1789), nom. cons.
Hydrocotylaceae Bercht. & J. Presl (1820), nom. cons.
  • G. M. PlunkettEmail author
  • J. Wen
  • P. P. LowryII
  • A. D. Mitchell
  • M. J. Henwood
  • P. Fiaschi
Part of the The Families and Genera of Vascular Plants book series (FAMILIES GENERA, volume 15)


Small shrubs to large trees, less commonly lianas or herbs, glabrous or pubescent; mating system hermaphroditic or andromonoecious, rarely dioecious or diphasic; schizogenous secretory canals throughout the plant; plants terrestrial, hemi-epiphytic, or climbing, evergreen or deciduous; stems monocaulous or sparsely to well branched, usually pachycaulous. Leaves alternate (rarely opposite or whorled), frequently heteroblastic; petioles usually present (leaves rarely sessile) and often sheathing at the base, sometimes alate, exstipulate, or with ligulate stipules; blade simple to ternately, palmately or pinnately lobed or compound (or peltate), occasionally bi- or tri-pinnately compound, with entire, crenate, toothed, or incised margins; venation pinnate or palmate. Inflorescences terminal (rarely also axillary or pseudo-lateral), paniculate, compound-umbellate or simple-umbellate, the ultimate units umbellate, capitulate, racemose, spikate, or flowers rarely solitary; inflorescence axes subtended by foliose to minute bracts (or bracts lacking); flowers subtended by bracteoles (or bracteoles lacking). Flowers perfect, staminate, or pistillate, epigynous (rarely half-epigynous or hypogynous), actinomorphic; sepals and petals typically (3–)5(–12); calyx lobes simple and minute or obscure, but often forming a truncate rim; petals valvate or imbricate, free or rarely united, sometimes calyptrate, the bases broadly inserted; stamens isomerous to several/many times the number of petals (3–250+), in one whorl (and then alternipetalous) to many whorls, anthers dorsifixed, introrse, tetrasporangiate (rarely octosporangiate), dehiscing by longitudinal slits; filaments filiform (to short and stout), inflexed in bud; ovary syncarpous of 2–5(–100+) carpels (or unicarpellate through carpel abortion), each carpel unilocular with apical placentation; stigmas on a distinct style or sessile; stylodia distinct or partially to fully connate, sometimes swollen at the base and confluent with the nectariferous disc of the ovary; ovules anatropous, pendulous, one per locule, unitegmic, crassinucellate or rarely tenuinucellate. Fruits simple or sometimes multiple, fleshy (rarely dry), usually drupaceous (rarely baccate) with a fleshy mesocarp and usually separate pyrenes with variously sclerified endocarps around each locule, or rarely a schizocarp with two mericarps, with or without a free carpophore; one or more secretory canals (“companion canals” or “rib oil ducts”) found in association with each vascular strand. Seeds straight; endosperm copious, oily, uniform or variously ruminate; embryo minute but well differentiated.

Selected Bibliography

  1. Bentham, G. 1867. Araliaceae. In: Bentham, G., Hooker J.D. (eds.) Genera Plantarum, vol. 1. London: A. Black, W. Pamplin, Lovell Reeve & Co., pp. 931–947.Google Scholar
  2. Berry, E.W. 1903. Aralia in American paleobotany. Bot. Gaz. 36: 421–428.CrossRefGoogle Scholar
  3. Blackburn, D.T. 1981. Tertiary megafossil flora of Maslin Bay, South Australia: numerical taxonomic study of selected leaves. Alcheringa 5: 9–28.CrossRefGoogle Scholar
  4. Blackburn, D.T., Sluiter, I.R.K. 1994. The Oligocene-Miocene coal floras of southeastern Australia. In: Hill, R.S. (ed.) History of the Australian vegetation: Cretaceous to Recent. New York: Cambridge University Press, pp. 328–367.Google Scholar
  5. Boesewinkel, F.D., Bouman, F. 1984. The seed: structure. In: Johri, B.M. (ed.) Embryology of Angiosperms. Berlin: Springer, pp. 567–610.CrossRefGoogle Scholar
  6. Bondarenko, O.V. 2008. Fossil wood of Eleutherococcus from Southern Primorye (Russian Far East). In: Pimenov, M.G., Tilney, P.M. (eds.) Apiales 2008: The program and proceedings of the 6th International Symposium on Apiales. Moscow: KMK Sci. Press, pp. 24–25.Google Scholar
  7. Bouman, F. 1984. The ovule. In: Johri, B.M. (ed.) Embryology of Angiosperms. Berlin: Springer, pp. 123–157.CrossRefGoogle Scholar
  8. Burtt, B.L., Dickison, W.C. 1975. The morphology and relationships of Seemannaralia (Araliaceae). Notes Roy. Bot. Gard. Edinb. 33: 449–466.Google Scholar
  9. Calestani, V. 1905. Contributo alla sistematica delle Ombrellifere d’Europa. Webbia 1: 89–280.CrossRefGoogle Scholar
  10. Carpenter, R.J., Hill, R.S., Scriven, L.J. 2006. Palmately lobed Proteaceae leaf fossils from the middle Eocene of South Australia. Int. J. Plant Sci. 167: 1049–1060.CrossRefGoogle Scholar
  11. Chandler, G.T., Plunkett, G.M. 2004. Evolution in Apiales: nuclear and chloroplast markers together in (almost) perfect harmony. Bot. J. Linn. Soc. 144: 123–147.CrossRefGoogle Scholar
  12. Corner, E.J.H. 1976. The seeds of dicotyledons, vol. 1. Cambridge: Cambridge University Press.Google Scholar
  13. Costello, A., Motley, T.J. 2004. The development of the superior ovary in Tetraplasandra (Araliaceae). Amer. J. Bot. 91: 644–655.CrossRefGoogle Scholar
  14. Costion, C.M., Plunkett, G.M. 2016. A revision of the genus Osmoxylon (Araliaceae) in Palau, including two new species. PhytoKeys 58: 49–64.CrossRefGoogle Scholar
  15. Cronquist, A. 1981. An integrated system of classification of flowering plants. New York: Columbia University Press.Google Scholar
  16. Davila, Y.C., Wardle, G.M. 2008. Variation in native pollinators in the absence of honeybees: implications for reproductive success of an Australian generalist-pollinated herb Trachymene incisa (Apiaceae). Bot. J. Linn. Soc. 156: 479–490.CrossRefGoogle Scholar
  17. Davis, G.L. 1966. Systematic embryology of the angiosperms. New York: Wiley.Google Scholar
  18. Dilcher, D.L., Dolph, G.E. 1970. Fossil leaves of Dendropanax from Eocene sediments of southeastern North America. Amer. J. Bot. 57: 153–160.CrossRefGoogle Scholar
  19. Erbar, C., Leins, P. 2004. Sympetaly in Apiales (Apiaceae, Araliaceae, Pittosporaceae). S. African J. Bot. 70: 458–467.CrossRefGoogle Scholar
  20. Esau, K. 1940. Developmental anatomy of the fleshy storage organ of Daucus carota. Hilgardia 13: 175–209.CrossRefGoogle Scholar
  21. Eyde, R.H., Tseng, C.C. 1969. Flower of Tetraplasandra gymnocarpa: hypogyny with epigynous ancestry. Science 166: 506–508.PubMedCrossRefGoogle Scholar
  22. Eyde, R.H., Tseng, C.C. 1971. What is the primitive floral structure of Araliaceae? J. Arnold Arbor. 52: 205–239.Google Scholar
  23. Fiaschi, P. 2002. Estudo taxonômico do gênero Schefflera J.R. Forst. & G. Forst. (Araliaceae) na região Sudeste do Brasil. Dissertação de Mestrado, Universidade de São Paulo.Google Scholar
  24. Fiaschi, P. 2016. A new species of Dendropanax (Araliaceae) from the Brazilian Atlantic Forest. Brittonia 68: 103–110.CrossRefGoogle Scholar
  25. Fiaschi, P., Pirani, J.R. 2005. Three new species of Schefflera J.R. Forst. & G. Forst. (Araliaceae) from Espinhaço Range, Minas Gerais, Brazil. Novon 15: 117–122.Google Scholar
  26. Fiaschi, P., Plunkett, G.M. 2011. Monophyly and phylogenetic relationships of Neotropical Schefflera (Araliaceae) based on plastid and nuclear markers. Syst. Bot. 36: 806–817.CrossRefGoogle Scholar
  27. Fiaschi, P., Santos, F.A.R., Westbrook, E., Plunkett, G.M. 2010. Taxonomic significance of pollen morphology in Neotropical Schefflera (Araliaceae). Plant Div. Evol. 128: 297–323.CrossRefGoogle Scholar
  28. French, D.H. 1971. Ethnobotany of the Umbelliferae. In: Heywood, V.H. (ed.) The biology and chemistry of the Umbelliferae. Bot. J. Linn. Soc. 64, Suppl. 1: 385–412.Google Scholar
  29. Frodin, D.G., Govaerts, R. 2004. World Checklist and Bibliography of Araliaceae. Richmond: RBG Kew Publishing.Google Scholar
  30. Frodin, D.G., Lowry II, P.P., Plunkett, G.M. 2010. Schefflera (Araliaceae): taxonomic history, overview, and progress. Plant Div. Evol. 128(3–4): 561–595.CrossRefGoogle Scholar
  31. Gillespie, L.H., Henwood, M.J. 1994. Temporal changes of floral nectar-sugar composition in Polyscias sambucifolia (Sieb. ex DC.) Harms (Araliaceae). Ann. Bot. 74: 227–231.CrossRefGoogle Scholar
  32. Gostel, M.R., Plunkett, G.M., Lowry II, P.P. 2017. Straddling the Mozambique Channel: molecular evidence for two major clades of Afro-Malagasy Schefflera (Araliaceae) co-occurring in Africa and Madagascar. Pl. Ecol. Evol. 150: 87–108.CrossRefGoogle Scholar
  33. Graham, A. 1999. Late Cretaceous and Cenozoic history of North American vegetation. New York: Oxford University Press.Google Scholar
  34. Gruas-Cavagnetto, C., Bui, N.-S. 1976. Présence de pollen d’Araliacées dans le Paléogène Anglais et Français. Rev. Palaeobot. Palynol. 22: 61–72.CrossRefGoogle Scholar
  35. Gruas-Cavagnetto, C., Cerceau-Larrival, M.-T. 1982. Présence de pollens d’Ombellifères fossiles dans le Paléogène du bassin Anglo-Parisien: premiers résultats. In: Cauwet, A.M., Carbonnier, J. (eds.) Contributions Pluridisciplinaires à la Systématique; actes du 2ème Symposium International sur les Ombellifères, Centre Universitaire de Perpignan. St. Louis: Missouri Botanical Garden, pp. 255–267.Google Scholar
  36. Harms, H. 1894 and 1897. Araliaceae. In: Engler, A., Prantl, K. (eds.) Die natürlichen Planzenfamilien III, vol. 8. Leipzig: W. Engelmann, pp. 1–62.Google Scholar
  37. Hart, J.M., Henwood, M.J. 2006. A revision of Australian Trachymene (Apiaceae: Hydrocotyloideae). Austr. Syst. Bot. 19: 11–55.CrossRefGoogle Scholar
  38. Hegnauer, R. 1964. Araliaceae. In: Chemotaxonomie der Pflanzen, vol. III. Basel: Birkhäuser, pp. 173–184.CrossRefGoogle Scholar
  39. Hegnauer, R. 1971. Chemical patterns and relationships of Umbelliferae. In: Heywood, V.H. (ed.) The biology and chemistry of the Umbelliferae. Bot. J. Linn. Soc. 64, Suppl. 1. London & New York: Academic Press, pp. 267–277.Google Scholar
  40. Hegnauer, R. 1989. Araliaceae. In: Chemotaxonomie der Pflanzen, vol. VIII. Basel: Birkhäuser, pp. 65–75, 699–700.Google Scholar
  41. Henwood, M.J. 1986. The breeding system of the polymorphic Polyscias sambucifolia (Sieb. ex DC.) Harms (Araliaceae). In: Williams, E.G, Knox, R.B., Irvine, D. (eds.) Pollination ’86. Melbourne: University of Melbourne School of Botany, pp. 70–78.Google Scholar
  42. Henwood, M.J. 1991. Pollen morphology of Polyscias (Araliaceae) – the Malesian and Australian species. Grana 30: 559–576.CrossRefGoogle Scholar
  43. Hoar, C.S. 1915. A comparison of the stem anatomy of the cohort Umbelliflorae. Ann. Bot. 29: 55–63.CrossRefGoogle Scholar
  44. Hutchinson, J. 1967. The genera of flowering plants, vol. 2. London: Oxford University Press.Google Scholar
  45. Jay, M. 1969. Chemotaxonomic researches on vascular plants. XIX. Flavonoid distribution in the Pittosporaceae. Bot. J. Linn. Soc. 62: 423–429.CrossRefGoogle Scholar
  46. Jebb, M.P. 1998. A revision of the genus Trevesia (Araliaceae). Glasra 3: 85–113. Google Scholar
  47. Jurica, H.S. 1922. A morphological study of the Umbelliferae. Bot. Gaz. 74: 292–307.CrossRefGoogle Scholar
  48. Knuth, P. 1908. Handbook of flower pollination, vol. 2 (translated by Davis, J.R.A.). Oxford: Clarendon Press.Google Scholar
  49. Kotina, E., Oskolski, A.A. 2010. Survey of the bark anatomy of Araliaceae and related taxa. Plant Div. Evol. 128: 455–489.CrossRefGoogle Scholar
  50. Lewis, W.H., Zenger, V.E. 1983. Breeding systems and fecundity in the American ginseng, Panax quinquefolium (Araliaceae). Amer. J. Bot. 70: 466–468.CrossRefGoogle Scholar
  51. Li, R., Wen, J. 2013. Phylogeny and biogeography of Dendropanax (Araliaceae), an Amphi-Pacific disjunct genus between tropical/subtropical Asia and the Neotropics. Syst. Bot. 38: 536–551.CrossRefGoogle Scholar
  52. Li, R., Wen, J. 2014. Phylogeny and biogeography of Asian Schefflera (Araliaceae) based on nuclear and plastid DNA sequences data. J. Syst. Evol. 52: 431–449.CrossRefGoogle Scholar
  53. Lowry II, P.P. 1990. Araliaceae, ginseng family. In: Wagner, W.L., Herbst, D.R., Sohmer, S.H. (eds.) Manual of the flowering plants of Hawai’i, vol. 1. Honolulu: University of Hawaii Press and Bishop Museum Press, pp. 224–237.Google Scholar
  54. Lowry II, P.P., Plunkett, G.M. 2010. Recircumscription of Polyscias (Araliaceae) to include six related genera, with a new infrageneric classification and a synopsis of species. Plant Div. Evol. 128: 55–84.CrossRefGoogle Scholar
  55. Lowry II, P.P., Wood, K.R. 2000. A new species of Tetraplasandra (Araliaceae) from Kaua’i, Hawaiian Islands. Novon 10: 40–44.Google Scholar
  56. Lowry II, P.P., Plunkett, G.M., Frodin, D.G. 2013. Revision of Plerandra (Araliaceae). I. A synopsis of the genus with an expanded circumscription and a new infrageneric classification. Brittonia 64: 42–61.CrossRefGoogle Scholar
  57. Lowry II, P.P., Plunkett, G.M., Gostel, M.R., Frodin, D.G. 2017. A synopsis of the Afro-Malagasy species previously included in Schefflera J.R. Forst. & G. Forst. (Araliaceae): resurrection of the genera Astropanax Seem. and Neocussonia (Harms) Hutch. Candollea 72: 265–282.CrossRefGoogle Scholar
  58. Lubbock, J. 1892. A contribution to our knowledge of seedlings. London: Kegan Paul, Trench and Trübner.Google Scholar
  59. Mabberley, D.J. 2008. Mabberley’s Plant-book (3rd ed.). Cambridge: Cambridge University Press.Google Scholar
  60. Maguire, B., Steyermark, J.A., Frodin, D.G. 1984. Araliaceae. In: Maguire, B., Cowan, R.S., Wurdack, J.J. et al., The Botany of the Guayana Highland – Part XII. Mem. New York Bot. Gard. 38: 46–82.Google Scholar
  61. Manchester, S.R. 1994. Fruits and seeds of the middle Eocene Nut Beds flora, Clarno Formation, Oregon. Palaeontograph. Amer. 58: 1–205.Google Scholar
  62. Manchester, S.R., Grímsson, F., Zetter, R. 2015. Assessing the fossil record of Asterids in the context of our current phylogenetic framework. Ann. Missouri Bot. Gard. 100: 329–363.CrossRefGoogle Scholar
  63. Meier, A.J., Bratton, S.P., Duffy, D.C. 1995. Possible ecological mechanisms for loss of vernal-herb diversity in logged eastern deciduous forests. Ecol. Appl. 5: 935–946.CrossRefGoogle Scholar
  64. Mendoza, M., Fuentes, A.F. 2010. Hydrocotyle apolobambensis (Apiaceae), una especie neueva andina del Noroeste de Bolivia. Novon 20(3): 303–306.CrossRefGoogle Scholar
  65. Metcalfe, D.J. 2005. Hedera helix L. (Biological flora of the British Isles). J. Ecol. 93: 632–648.CrossRefGoogle Scholar
  66. Metcalfe, C.R., Chalk, L. 1983. Anatomy of the Dicotyledons, 2nd ed. Oxford: Clarendon Press.Google Scholar
  67. Mitchell, A., Wen, J. 2004. Phylogeny of the Asian core Araliaceae clade based on granule-bound starch synthase I (GBSSI) sequence data. Taxon 53: 29–41.Google Scholar
  68. Mitchell, A., Li, R., Brown, J.W., Schoenberger, I., Wen, J. 2012. Ancient divergence and biogeography of Raukaua (Araliaceae) and close relatives in the southern hemisphere. Austral. Syst. Bot. 25: 432–446.CrossRefGoogle Scholar
  69. Mittal, S.P. 1961. Studies in the Umbellales. II. The vegetative anatomy. J. Indian Bot. Soc. 40: 424–443.Google Scholar
  70. Mohana Rao, P.R. 1972. Morphology and embryology of Tieghemopanax sambucifolius with comments on the affinities of the family Araliaceae. Phytomorphology 22: 75–87.Google Scholar
  71. Muller, J. 1981. Fossil pollen record of extant angiosperms. Bot. Rev. 47: 1–142.CrossRefGoogle Scholar
  72. Nicolas, A.N., Plunkett, G.M. 2009. The demise of subfamily Hydrocotyloideae (Apiaceae) and the re-alignment of its genera across the entire order Apiales. Molec. Phylog. Evol. 53: 134–151.CrossRefGoogle Scholar
  73. Nicolas, A.N., Plunkett, G.M. 2014. Diversification times and biogeographic patterns in Apiales. Bot. Rev. 80: 30–58.CrossRefGoogle Scholar
  74. Oskolski, A.A. 1996. A survey of the wood anatomy of the Araliaceae. In: Donaldson, L.A., Singh, A.P., Butterfield, B.G., Whitehouse, L.J. (eds.) Recent advances in wood anatomy. Rotorua: New Zealand Forest Institute, pp. 99–119.Google Scholar
  75. Oskolski, A.A., Lowry II, P.P. 2001. Wood anatomy of Schefflera and related taxa (Araliaceae): II. Systematic wood anatomy of New Caledonian Schefflera. IAWA J. 22: 301–330.CrossRefGoogle Scholar
  76. Oskolski, A.A., Sokoloff, D.D., Van Wyk, B.-E. 2008. Floral morphology of Seemannaralia (Araliaceae): from bilocular ovary to unilocular fruit. In: Pimenov, M.G., Tilney, P.M. (eds.) Apiales 2008: The program and proceedings of the 6th International Symposium on Apiales. Moscow: KMK Sci. Press, pp. 98–100.Google Scholar
  77. Philipson, W.R. 1970. Constant and variable features of the Araliaceae. In: Robson, N.K.B., Cutler, D.F., Gregory, M. (eds.) New research in plant anatomy. Bot. J. Linn. Soc. 63, Suppl. 1: 87–100.Google Scholar
  78. Philipson, W.R. 1973. A revision of Harmsiopanax (Araliaceae). Blumea 21: 81–86.Google Scholar
  79. Philipson, W.R. 1978. Araliaceae: growth forms and shoot morphology. In: Tomlinson, P.B., Zimmermann, M.H. (eds.) Tropical trees as living systems. Cambridge: Cambridge University Press, pp. 269–284.Google Scholar
  80. Philipson, W.R. 1979. Araliaceae. Flora Malesiana ser. 1, 9(1): 1–105.Google Scholar
  81. Pimenov, M.G., Vasil’eva, M.G., Leonov, M.V., Daushkevich, J.V. 2003. Karyotaxonomical analysis in the Umbelliferae. Enfield, New Hampshire: Science Publishers Inc.Google Scholar
  82. Pire, S.M. 1989. Morfologica polinica de las Araliaceaes de Argentina. Bonplandia 6: 133–150.Google Scholar
  83. Plunkett, G.M. 2001. The relationship of the order Apiales to subclass Asteridae: a re-evaluation of morphological characters based on insights from molecular data. Edinb. J. Bot. 58: 183–200.CrossRefGoogle Scholar
  84. Plunkett, G.M., Lowry II, P.P. 2010. Paraphyly and polyphyly in Polyscias sensu lato: molecular evidence and the case for recircumscribing the “pinnate genera” of Araliaceae. Plant Div. Evol. 128: 23–54.CrossRefGoogle Scholar
  85. Plunkett, G.M., Lowry II, P.P. 2012. Phylogeny and diversification in the Melanesian Schefflera clade (Araliaceae) based on evidence from nuclear rDNA spacers. Syst. Bot. 37: 279–291.CrossRefGoogle Scholar
  86. Plunkett, G.M., Soltis, D.E., Soltis, P.S. 1996. Higher level relationships of Apiales (Apiaceae and Araliaceae) based on phylogenetic analysis of rbcL sequences. Amer. J. Bot. 83: 499–515.CrossRefGoogle Scholar
  87. Plunkett, G.M., Chandler, G.T., Lowry II, P.P., Pinney, S.M., Sprenkle, T.S. 2004a. Recent advances in understanding Apiales and a revised classification. S. African J. Bot. 70: 371–381.CrossRefGoogle Scholar
  88. Plunkett, G.M., Wen, J., Lowry II, P.P. 2004b. Infrafamilial relationships in Araliaceae: insights from plastid (trnL-trnF) and nuclear (ITS) sequence data. Plant Syst. Evol. 245: 1–39.CrossRefGoogle Scholar
  89. Plunkett, G.M., Lowry II, P.P., Frodin, D.G., Wen, J. 2005. Phylogeny and geography of Schefflera: pervasive polyphyly in the largest genus of Araliaceae. Ann. Missouri Bot. Gard. 92: 202–224.Google Scholar
  90. Pombal, E.C.P., Morellato, L.P.C. 1995. Polinização por moscas em Dendropanax cuneatum Decne. & Planch. (Araliaceae) em floresta semidecídua no sudeste do Brasil. Revista Brasil. Bot. 18: 157–162.Google Scholar
  91. Rásky, K. 1959. The fossil flora of Ipolytarnóc (preliminary report). J. Paleontol. 33: 453–461.Google Scholar
  92. Rodríguez, R.L. 1971. The relationships of the Umbellales. In: Heywood, V.H. (ed.) The biology and chemistry of the Umbelliferae. Bot. J. Linn. Soc. 64, Suppl. 1: 63–91.Google Scholar
  93. Schlessman, M.A. 1990. Phenotypic gender in sex changing dwarf ginseng, Panax trifolium (Araliaceae). Amer. J. Bot. 77: 1125–1131.CrossRefGoogle Scholar
  94. Schlessman, M.A. 1991. Size, gender and sex change in dwarf ginseng, Panax trifolium (Araliaceae). Oecologia 87: 588–595.PubMedCrossRefGoogle Scholar
  95. Schlessman, M.A., Lloyd, D.G., Lowry II, P.P. 1990a. Evolution of sexual systems in New Caledonian Araliaceae. Mem. New York Bot. Gard. 55: 105–117.Google Scholar
  96. Schlessman, M.A., Lowry II, P.P., Lloyd, D.G. 1990b. Functional dioecism in the New Caledonian endemic Polyscias pancheri (Araliaceae). Biotropica 22: 133–139.CrossRefGoogle Scholar
  97. Schlessman, M.A., Plunkett, G.M., Lowry II, P.P., Lloyd, D.G. 2001. Sexual systems of New Caledonian Araliaceae: a preliminary phylogenetic reappraisal. Edinb. J. Bot. 58: 221–228.CrossRefGoogle Scholar
  98. Seemann, B. 1868. Revision of the natural order of Hederaceae. London: L. Reeve & Co.Google Scholar
  99. Shoup, J.R., Tseng, C.C. 1977. A palynological study of Schefflera paraensis Huber ex Ducke (Araliaceae). Grana 16: 81–84.CrossRefGoogle Scholar
  100. Solereder, H. 1908. Systematic anatomy of the dicotyledons, vol. 1. Oxford: Clarendon Press.Google Scholar
  101. Song, Z.-C., Wang, W.-M., Huang, F. 2004. Fossil pollen records of extant angiosperms in China. Bot. Rev. 70: 425–458.CrossRefGoogle Scholar
  102. Sosa, V. 1983. Características palinológicas de las araliáceas de México. Bol. Soc. Bot. México 45: 117–132.Google Scholar
  103. Stevens, P.F. 2001 onwards. Angiosperm Phylogeny Website. Google Scholar
  104. Thomson, J.D., Barrett, S.C.H. 1981. Temporal variation of gender in Aralia hispida Vent. (Araliaceae). Evolution 35: 1094–1107.PubMedCrossRefGoogle Scholar
  105. Ting, W.S., Tseng, C.C., Mathias, M.E. 1964. A survey of pollen morphology of Hydrocotyloideae (Umbelliferae). Pollen & Spores 6: 479–514.Google Scholar
  106. Tseng, C.C. 1971. Light and scanning electron microscopic studies on pollen of Tetraplasandra (Araliaceae) and relatives. Amer. J. Bot. 58: 505–516.CrossRefGoogle Scholar
  107. Tseng, C.C. 1973. Systematic Palynology of Tupidanthus and Plerandra (Araliaceae). Grana 13: 51–56.CrossRefGoogle Scholar
  108. Tseng, C.C. 1974. Pollen of Boerlagiodendron: a unique type in the Araliaceae. Amer. J. Bot. 61: 717–721.CrossRefGoogle Scholar
  109. Tseng, C.-J., Hoo, G. 1982. A new classification scheme for the family Araliaceae. Acta Phytotax. Sinica 20: 125–130.Google Scholar
  110. Tseng, C.C., Shoup, J.R. 1978. Pollen morphology of Schefflera (Araliaceae). Amer. J. Bot. 65: 384–394.CrossRefGoogle Scholar
  111. Valcárcel, V., Fiz-Palacios, O., Wen, J. 2014. The origin of the early differentiation of ivies (Hedera L.) and the radiation of the Asian Palmate group (Araliaceae). Molec. Phylog. Evol. 70: 492–503.CrossRefGoogle Scholar
  112. van Tieghem, P. 1872. Sur les canaux oléo-résineaux des Ombellifères et des Araliacées. Bull. Soc. Bot. France 19: 113–129.CrossRefGoogle Scholar
  113. van Tieghem, P. 1884. Sur la structure et les affinités des Pittosporées. Bull. Soc. Bot. France 31: 384–385.Google Scholar
  114. van Wyk, B.-E., Wink, M. 2004. Medicinal plants of the world. Pretoria: Briza Publications.Google Scholar
  115. Viguier, R. 1906. Recherches anatomiques sur la classification des Araliacées. Ann. Sci. Nat. Bot. IX, 4: 1–210.Google Scholar
  116. Wagenitz, G. 1992. The Asteridae: evolution of a concept and its present status. Ann. Missouri Bot. Gard. 79: 209–217.CrossRefGoogle Scholar
  117. Wen, J. 1993. Generic delimitation of Aralia L. (Araliaceae). Brittonia 45: 47–55.CrossRefGoogle Scholar
  118. Wen, J. 1999. Evolution of eastern Asian and eastern North American disjunct pattern in flowering plants. Ann. Rev. Ecol. Syst. 30: 421–455.CrossRefGoogle Scholar
  119. Wen, J. 2001a. Evolution of the Aralia-Panax complex (Araliaceae) as inferred from nuclear ribosomal ITS sequences. Edinb. J. Bot. 58: 183–200.CrossRefGoogle Scholar
  120. Wen, J. 2001b. Evolution of eastern Asian and eastern North American biogeographic pattern: a few additional issues. Int. J. Plant Sci 162: S117–S122.CrossRefGoogle Scholar
  121. Wen, J. 2001c. Species diversity, nomenclature, phylogeny, biogeography, and classification of the ginseng genus (Panax L., Araliaceae). In: Punja, Z.K. (ed.) Utilization of biotechnological, genetic and cultural approaches for North American and Asian ginseng improvement. Vancouver: Simon Fraser University Press, pp. 67–88.Google Scholar
  122. Wen, J. 2002. Revision of Aralia sect. Pentapanax (Seem.) J. Wen (Araliaceae). Cathaya 11–12: 1–116.Google Scholar
  123. Wen, J. 2004. Systematics and biogeography of Aralia L. sect. Dimorphanthus (Miq.) Miq. (Araliaceae). Cathaya 15–16: 1–187.Google Scholar
  124. Wen, J. 2011. Systematics and biogeography of Aralia L. (Araliaceae): Revision of Aralia sects. Aralia, Humiles, Nanae, and Sciadodendron. Contr. United States Nat. Herb. 57: 1–172.Google Scholar
  125. Wen, J., Nowicke, J.W. 1999. Pollen ultrastructure of Panax (the ginseng genus, Araliaceae), an eastern Asian and eastern North American disjunct genus. Amer. J. Bot. 86: 1624–1636.CrossRefGoogle Scholar
  126. Wen, J., Zimmer, E.A. 1996. Phylogeny of Panax L. (the ginseng genus, Araliaceae): inference from ITS sequences of nuclear ribosomal DNA. Molec. Phylog. Evol. 5: 167–177.CrossRefGoogle Scholar
  127. Wen, J., Shi, S., Jansen, R.K., Zimmer, E.A. 1998. Phylogeny and biogeography of Aralia sect. Aralia (Araliaceae). Amer. J. Bot. 85: 866–875.CrossRefGoogle Scholar
  128. Wen, J., Plunkett, G.M., Mitchell, A.D., Wagstaff, S.J. 2001. The evolution of Araliaceae: a phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Syst. Bot. 26: 144–167.Google Scholar
  129. Wen, J., Ickert-Bond, S., Nie, Z.-L., Li, R. 2010. Timing and modes of evolution of eastern Asian – North American biogeographic disjunctions in seed plants. In: Long, M., Gu, H., Zhou, Z. (eds.) Darwin’s heritage today: Proceedings of the Darwin 2010 Beijing International Conference. Beijing: Higher Education Press, pp. 252–269.Google Scholar
  130. Xie, G.-X., Qiu, Y.-P., Qiu, M.-F., Gao, X.-F., Liu, Y.-M., Jia, W. 2007. Analysis of dencichine in Panax notoginseng by gas chromatography-mass spectrometry with ethyl chloroformate derivatization. J. Pharm. Biomed. Anal. 43: 920–925.PubMedCrossRefGoogle Scholar
  131. Yi, T., Lowry II, P.P., Plunkett, G.M., Wen, J. 2004. Chromosomal evolution in Araliaceae and close relatives. Taxon 53: 987–1005.CrossRefGoogle Scholar
  132. Zuo, Y., Chen, Z., Kondo, K., Funamoto, T., Wen, J., Zhou, S. 2011. DNA barcoding of Panax species. Planta Medica 72: 182–187.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • G. M. Plunkett
    • 1
    Email author
  • J. Wen
    • 2
  • P. P. LowryII
    • 3
    • 4
  • A. D. Mitchell
    • 5
  • M. J. Henwood
    • 6
  • P. Fiaschi
    • 7
  1. 1.Cullman Program for Molecular Systematics, New York Botanical GardenBronxUSA
  2. 2.Department of Botany, National Museum of Natural History, MRC 166Smithsonian InstitutionWashington, DCUSA
  3. 3.Missouri Botanical GardenSt. LouisUSA
  4. 4.Institut de Systématique, Évolution et Biodiversité (ISYEB), Unité Mixte de Recherche 7205Muséum national d’Histoire naturelle, Sorbonne UniversitésParisFrance
  5. 5.University of OtagoChristchurchNew Zealand
  6. 6.School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
  7. 7.Departamento de Botânica, CCBUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations