Introduction to the Orders of this Volume

  • V. Bittrich
  • J. W. Kadereit
Part of the The Families and Genera of Vascular Plants book series (FAMILIES GENERA, volume 15)


The present volume of this book series completes the treatment of the Asterids. Asterids are now contained in Vols. VI (Cornales, Ericales, 2004), VII (Lamiales, 2004), VIII (Asterales, 2007), XIV (Aquifoliales, Boraginales, Bruniales, Dipsacales, Escalloniales, Garryales, Paracryphiales, Solanales, Icacinaceae, Metteniusaceae, Vahliaceae, 2016) and the present volume, which contains the orders Apiales and Gentianales (except Rubiaceae). The only families of Asterids not treated in the series are Acanthaceae (Lamiales), Convolvulaceae (Solanales) and Rubiaceae (Gentianales).


  1. Backlund, A., Bremer, B. 1997. Phylogeny of the Asteridae s. str based on rbcL sequences, with particular reference to the Dipsacales. Plant Syst. Evol. 207: 225–254. CrossRefGoogle Scholar
  2. Backlund, M., Oxelman, B., Bremer, B. 2000. Phylogenetic relationships within Gentianales based on ndhF and rbcL sequences, with particular reference to the Loganiaceae. Amer. J. Bot. 87: 1029–1043.CrossRefGoogle Scholar
  3. Bartling, F.G. 1830. Ordines naturales plantarum eorumque characteres et affinitates. Göttingen: Dieterichianus.Google Scholar
  4. Bentham, G., Hooker, J.D. 1862–1883. Genera Plantarum, vols. 1–3. London: Lovell Reeve.Google Scholar
  5. Bremer, B. 2009. A review of molecular phylogenetic studies of Rubiaceae. Ann. Missouri Bot. Gard. 96: 4–26.CrossRefGoogle Scholar
  6. Bremer, B., Eriksson, T. 2009. Time tree of Rubiaceae: phylogeny and dating of the family, subfamilies, and tribes. Int. J. Plant Sci. 170: 766–793.CrossRefGoogle Scholar
  7. Bremer, B., Jansen, R.K., Oxelman, B., Backlund, M., Lantz, H., Kim, K.J. 1999. More characters or more taxa for a robust phylogeny - case study from the coffee family (Rubiaceae). Syst. Biol. 48: 413–435.CrossRefGoogle Scholar
  8. Bremer, K., Friis, E.M., Bremer, B. 2004. Molecular phylogenetic dating of asterid flowering plants shows Early Cretaceous diversification. Syst. Biol. 53: 496–505.CrossRefGoogle Scholar
  9. Chandler, G.T., Plunkett, G.M. 2004. Evolution in Apiales: nuclear and chloroplast markers together in (almost) perfect harmony. Bot. J. Linn. Soc. 144: 123–147.CrossRefGoogle Scholar
  10. Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H., Mishler, B.D., Duvall, M.R., Price, R.A., Hills, H.G., Qiu, Y.-L., Kron, K.A., Rettig, J.H., Conti, E., Palmer, J.D., Manhart, J.R., Sytsma, K.J., Michaels, H.J., Kress, W.J., Karol, K.G., Clark, W.D., Hedrén, M., Gaut, B.S., Jansen, R.K., Kim, K.-J., Wimpee, C.F., Smith, J.F., Furnier, G.R., Strauss, S.H., Xiang, Q.-Y., Plunkett, G.M., Soltis, P.S., Swensen, S.M., Williams, S.E., Gadek, P.A., Quinn, C.J., Eguiarte, L.E., Golenberg, E., Learn, G.H., Jr., Graham, S.W., Barrett, S.C.H., Dayanandan, S., Albert, V.A. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80: 528–580.CrossRefGoogle Scholar
  11. Chen, Z.-D., Yan, T., Lin, L., Lu, L.-M., Li, H.-L., Sun, M., Liu, B., Chen, M., Niu, Y.-T., Ye, J.-F., Cao, Z.-Y., Liu, H.-M., Wang, X.-M., Wang, W., Zhang, J.-B., Meng, Z., Cao, W., Li, J.-H., Wu, S.-D., Zhao, H.-L., Liu, Z.-J., Du, Z.-Y., Wan, Q.-F., Guo, J., Xin-Xin Tan, X.-X., Su, J.-X., Zhang, L.-J., Yang, L.-L., Liao, Y.-Y., Li, M.-H., Zhang, G.-Q., Chung, S.-W., Zhang, J., Xiang, K.-L., Li, R.-Q., Soltis, D.E., Soltis, P.S., Zhou, S.-L., Ran, J.-H., Wang, X.-Q., Jin X.-H., Chen, Y.-S., Gao, T.-G., Li, J.-H., Zhang, S.-Z., Lu, A.M., China Phylogeny Consortium. 2016. Tree of life for the genera of Chinese vascular plants. J. Syst. Evol. 54: 277–306.CrossRefGoogle Scholar
  12. Cronquist, A. 1981. An Integrated System of Classification of Flowering Plants. New York: Columbia University Press.Google Scholar
  13. Dahlgren, R. 1980. A revised system of classification of the angiosperms. Bot. J. Linn. Soc. 80: 91–124.CrossRefGoogle Scholar
  14. Dahlgren, R. 1983. General aspects of angiosperm evolution and macrosystematics. Nord. J. Bot. 3: 119–149.CrossRefGoogle Scholar
  15. Downie, S.R., Palmer, J.D. 1992. Restriction site mapping of the chloroplast DNA inverted repeat: a molecular phylogeny of the Asteridae. Ann. Missouri Bot. Gard. 79: 266–283.CrossRefGoogle Scholar
  16. Drude, O. 1898. Umbelliferae. In: Engler, A., Prantl, K. (eds.) Die Natürlichen Pflanzenfamilien, vol. III. Leipzig: Verlag von Wilhelm Engelmann, pp. 63–250.Google Scholar
  17. Endlicher, S.L. 1850. Genera Plantarum, suppl. 4(3). (Griselinia, p. 16, n. 4562). Wien: Fr. Beck.Google Scholar
  18. Endress, P.K. 2011. Evolutionary diversification of the flowers in angiosperms. Amer. J. Bot. 98: 370–396.CrossRefGoogle Scholar
  19. Endress, P.K., Jenny, M., Fallen, M.E. 1983. Convergent elaboration of apocarpous gynoecia in higher advanced dicotyledons (Sapindales, Malvales, Gentianales). Nord. J. Bot. 3: 293–300.CrossRefGoogle Scholar
  20. Endress, M.E., Sennblad, B., Nilsson, S, Civeyrel, L., Chase, M.W., Huysmans, S., Grafström, E., Bremer, B. 1996. A phylogenetic analysis of Apocynaceae s.str. and some related taxa in Gentianales: a multidisciplinary approach. Op. Bot. Belgica 7: 59–102.Google Scholar
  21. Erbar, C., Leins, P. 1995. An analysis of the early floral development of Pittosporum tobira (Thunb.) Aiton and some remarks on the systematic position of the family Pittosporaceae. Feddes Repert. 106: 463–473.CrossRefGoogle Scholar
  22. Erbar, C., Leins, P. 2004. Sympetaly in Apiales (Apiaceae, Araliaceae, Pittosporaceae). S. Afr. J. Bot. 70: 458–467.CrossRefGoogle Scholar
  23. Erbar, C., Leins, P. 2010. Nectaries in Apiales and related groups. Plant Divers. Evol. 128: 269–295.CrossRefGoogle Scholar
  24. Erbar, C., Leins, P. 2011. Synopsis of some important, non-DNA character states in asterids with special reference to sympetaly. Plant Divers. Evol. 129: 93–123.CrossRefGoogle Scholar
  25. Hegnauer, R. 1969. Chemical evidence for the classification of some plant taxa. In: Harborne, J.B., Swain, T. (eds.) Perspectives in Phytochemistry. London: Academic Press, pp. 121–138.Google Scholar
  26. Hooker, J.D. 1867. Cornaceae. In: Bentham, G., Hooker, J.D. (eds.) Genera Plantarum 1(3). London: Reeve & Co, pp. 947–952.Google Scholar
  27. Janssens, S.B., Knox, E.B., Huysmans, S., Smets, E.F., Merckx, V.S.F.T. 2009. Rapid radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene: result of a global climate change. Molec. Phyl. Evol. 52: 806–824.CrossRefGoogle Scholar
  28. Jensen, S.R. Franzyk, H., Wallander, E. 2002. Chemotaxonomy of the Oleaceae: iridoids as taxonomic markers. Phytochemistry 60: 213–231.CrossRefGoogle Scholar
  29. Judd, W.S., Sanders, R.W., Donoghue, M.J. 1994. Angiosperm family pairs: preliminary phylogenetic analyses. Harvard Pap. Bot. 5: 1–51.Google Scholar
  30. Jussieu, A.-L. de. 1789. Genera Plantarum. Paris: Herissant & Barrois.Google Scholar
  31. Kårehed, J. 2001. Multiple origin of the tropical forest tree family Icacinaceae. Amer. J. Bot. 88: 2259–2274.CrossRefGoogle Scholar
  32. Kårehed, J. 2003. The family Pennantiaceae and its relationship to Apiales. Bot. J. Linn. Soc. 141: 1–24.CrossRefGoogle Scholar
  33. Ku, C., Chung, W.-C., Chen, L.-L., Kuo, C.-H. 2013. The complete plastid genome sequence of Madagascar periwinkle Catharanthus roseus (L.) G. Don: plastid genome evolution, molecular marker identification, and phylogenetic implications in Asterids. PLoS ONE 8: e68518.CrossRefGoogle Scholar
  34. Leeuwenberg, A.J.M., Leenhouts, P.W. 1980. Loganiaceae. In: Natürl. Pflanzenfam., ed. 2, 28b (1). Berlin: Duncker & Humblot, pp. 211–237.Google Scholar
  35. Lemaire, B. Vandamme, P., Merckx, V., Smets, E., Dessein, S. 2011. Bacterial leaf symbiosis in angiosperms: host specificity without co-speciation. PLoS ONE 6: e24430.CrossRefGoogle Scholar
  36. Lindley, J. 1830. An introduction to the natural system of botany: or, A systematic view of the organisation, natural affinities, and geographical distribution, of the whole vegetable kingdom: together with the uses of the most important species in medicine, the arts, and rural or domestic economy (1st ed.). London: Longman.Google Scholar
  37. Lindley, J. 1833. Nixus Plantarum. London: Ridgeway & Sons.Google Scholar
  38. Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L.L., Hernández-Hernández, T. 2015. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 207: 437–453.CrossRefGoogle Scholar
  39. Martínez-Alberola, F., del Campo, E.M., Lázaro-Gimeno, D., Mezquita-Claramonte, S., Molins, A., Mateu-Andrés, I., Pedrola-Monfort, J., Casano, L.M., Barreno, E. 2013. Balanced gene losses, duplications and intensive rearrangements led to an unusual regularly sized genome in Arbutus unedo chloroplasts. PLoS ONE 8: e79685CrossRefGoogle Scholar
  40. Miers, J. 1852. On some genera of the Icacinaceae. Ann. Mag. Nat. Hist. II, 9: 485–492.Google Scholar
  41. Nazaire, M., Wang, X.-Q., Hufford, L. 2014. Geographic origins and patterns of radiation of Mertensia (Boraginaceae). Amer. J. Bot. 101: 104–118.CrossRefGoogle Scholar
  42. Nicolas, A.N., Plunkett, G.M. 2009. The demise of subfamily Hydrocotyloideae (Apiaceae) and the re-alignment of its genera across the whole order Apiales. Molec. Phyl. Evol. 53: 134–151.CrossRefGoogle Scholar
  43. Nicolas, A.N., Plunkett, G.M. 2014. Diversification times and biogeographic patterns in Apiales. Bot. Review 80: 30–58.CrossRefGoogle Scholar
  44. Olmstead, R.G., Michaels, H., Scott, K.M., Palmer, J.D. 1992. Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Ann. Missouri Bot. Gard. 79: 249–265.Google Scholar
  45. Olmstead, R.G., Bremer, B., Scott, K.M., Palmer, J.D. 1993. A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. Ann. Missouri Bot. Gard. 80: 700–722.Google Scholar
  46. Plunkett, G.M., Lowry, P.P. Jr. 2001. Relationships among “ancient araliads” and their significance for the systematics of Apiales. Molec. Phyl. Evol. 19: 259–276.CrossRefGoogle Scholar
  47. Plunkett, G.M., Soltis, D.E., Soltis, P.S. 1996. Higher level relationships of Apiales (Apiaceae and Araliaceae) based on phylogenetic analysis of rbcL sequences. Amer. J. Bot. 83: 499–515.CrossRefGoogle Scholar
  48. Plunkett, G.M., Soltis, D.E., Soltis, P.S. 1997. Clarification of the relationship between Apiaceae and Araliaceae based on matK and rbcL sequence data. Amer. J. Bot. 84: 565–580.CrossRefGoogle Scholar
  49. Refulio-Rodriguez, N.F., Olmstead, R.G. 2014. Phylogeny of Lamiidae. Amer. J. Bot. 101: 287–299CrossRefGoogle Scholar
  50. Robbrecht, E., Manen, J.-F. 2006. The major evolutionary lineages of the coffee family (Rubiaceae, Angiosperms). Combined analysis (nDNA and cpDNA) to infer the position of Coptosapelta and Luculia, and supertree construction based on rbcL, rps16, trnL-trnF and atpB-rbcL data. A new classification in two subfamilies, Cinchonoideae and Rubioideae. Syst. Geogr. Pl. 76: 85–146.Google Scholar
  51. Rydin, C., Kainulainen, K., Razafimandimbison, S.G., Smedmark, J.E.E., Bremer, B. 2009. Deep divergences in the coffee family and the systematic position of Acranthera. Plant Syst. Evol. 278:101–123.CrossRefGoogle Scholar
  52. Rydin, C., Wikström, N., Bremer, B. 2017. Conflicting results from mitochondrial genomic data challenge current views of Rubiaceae phylogeny. Amer. J. Bot. 104:1522–1532.CrossRefGoogle Scholar
  53. Savolainen, V., Fay, M.F., Albach, D.C., Backlund, A., van der Bank M., Cameron, K.M., Johnson, S.A., Lledó, M.D., Pintaud, J.-C., Powell, M., Sheahan, M.C., Soltis, D.E., Soltis, P.S., Weston, P., Whitten, W.M., Wurdack, K.J., Chase, M.W. 2000. Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences. Kew Bull. 55: 257–309.CrossRefGoogle Scholar
  54. Soltis, D.E., Smith, S.A., Cellinese, N., Wurdack, K.J., Tank, D.C. , Brockington, S.F., Refulio-Rodriguez, N.F., Walker, J.B., Moore, M.J., Carlsward, B.S., Bell, C.D., Latvis, M., Crawley, S., Black, C., Diouf, D., Xi, Z., Rushworth, C.A., Gitzendanner, M.A., Sytsma, K.J., Qiu, Y.-L., Hilu, K.W., Davis, C.C., Sanderson, M.J., Beaman, R.S., Olmstead, R.G., Judd, W.S., Donoghue, M.J., Soltis, P.S. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. Amer. J. Bot. 98: 704–730.CrossRefGoogle Scholar
  55. Stevens, P.F. (2001 onwards). Angiosperm Phylogeny Website. Version 14, July 2017.Google Scholar
  56. Struwe, L., Albert, V.A., Bremer, B. 1994. Cladistics and family level classification of the Gentianales. Cladistics 10: 175–205.CrossRefGoogle Scholar
  57. Struwe, L., Kadereit, J.W., Klackenberg, J., Nilsson, S., Thiv, M., Hagen, K.B. von, Albert, V.A. 2002. Systematics, character evolution, and biogeography of Gentianaceae, including a new tribal and subtribal classification. In: Struwe, L., Albert, V.A. (eds.) Gentianaceae – Systematics and Natural History. Cambridge: Cambridge University Press, pp. 21–309.Google Scholar
  58. Struwe, L. Soza, V.L., Sugumaran, M., Olmstead, R.G. 2014. Gelsemiaceae (Gentianales) expanded to include the enigmatic Asian genus Pteleocarpa. Bot. J. Linn. Soc. 175: 482–496.CrossRefGoogle Scholar
  59. Stull, G.W., Duno de Stefano, R., Soltis, D.E., Soltis, P.S. 2015. Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome-scale data set. Amer. J. Bot. 102: 1794–1813.CrossRefGoogle Scholar
  60. Takhtajan, A. 1980. Outline of the classification of flowering plants (Magnoliophya). Bot. Review 46(3): 225–359.CrossRefGoogle Scholar
  61. Takhtajan, A. 1987. Systema Magnoliophytorum. Leningrad: Nauka.Google Scholar
  62. Tank, D.C., Eastman, J.M., Pennell, M.W., Soltis, P.S., Soltis, D.E, Hinchliff, C.E., Brown, J.W., Sessa, E.B., Harmon, L.J. 2015. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol. 207: 454–467.CrossRefGoogle Scholar
  63. Thorne, R.F. 1983. Proposed new alignments in the angiosperms. Nord. J. Bot. 3: 85–117.CrossRefGoogle Scholar
  64. van Tieghem P. 1884. Sur la structure et les affinités des Pittosporées. Bull. Soc. Bot. France 31: 383–385.CrossRefGoogle Scholar
  65. Wagenitz, G. 1959. Die systematische Stellung der Rubiaceae—ein Beitrag zum System der Sympetalen. Bot. Jahrb. Syst. 79: 17–35.Google Scholar
  66. Weigend, M., Luebert, F., Gottschling, M., Couvreur, T.L.P., Hilger, H.H., Miller, J.S. 2014. From capsules to nutlets—phylogenetic relationships in the Boraginales. Cladistics 30: 508–518CrossRefGoogle Scholar
  67. Wikström, N., Savolainen, V., Chase, M.W. 2001. Evolution of the angiosperms: calibrating the family tree. Proc. R. Soc. Lond. B 268: 2211–2220.CrossRefGoogle Scholar
  68. Wikström, N., Kainulainen, K., Razafimandimbison, S.G., Smedmark, J.E.E., Bremer, B. 2015. A revised time tree of the Asterids: establishing a temporal framework for evolutionary studies of the coffee family (Rubiaceae). PLoS ONE 10: e0126690.CrossRefGoogle Scholar
  69. Winkworth, R.C., Lundberg, J., Donoghue, M.J. 2008. Toward a resolution of campanulid phylogeny, with a special reference to the placement of Dipsacales. Taxon 57: 53–65.Google Scholar
  70. Yang, L.-L., Li, H.-L., Wei, L., Kuang, D.-Y., Li, M.-H., Liao, Y.-Y., Chen, Z.-D., Wu, H., Zhang, S.-Z. 2016. A supermatrix approach provides a comprehensive genus-level phylogeny for Gentianales. J. Syst. Evol. 54: 400–415.CrossRefGoogle Scholar
  71. Yi, T., Lowry, P.P. II, Plunkett, G.M., Wen, J. 2004. Chromosomal evolution in Araliaceae and close relatives. Taxon 53: 987–1005.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • V. Bittrich
    • 1
  • J. W. Kadereit
    • 2
  1. 1.CampinasBrazil
  2. 2.Johannes GutenbergUniversität MainzMainzGermany

Personalised recommendations