Advertisement

An Immersive System for 3D Floods Visualization and Analysis

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 840)

Abstract

Climate change has serious implications on our environment. Examples of such natural risks are massive rainfalls and the rise of ocean levels. Millions of people are exposed to the risk of extreme floods and storms. It is therefore crucial to develop analytical tools that allow us to evaluate the threats of floods and to investigate the influence of mitigation and adaptation measures, such as stronger dikes, adaptive spatial planning, and flood disaster plans. The objective of our work is to present a flood management system that aims to model and visualize floods. It provides realistic images to help users in understanding and interpreting these disaster scenarios. In order to investigate the applicability in practice, we illustrated the use of our system for real-world data in a case study for the city of Paris, France.

Keywords

Flood Visualization Decision-making Trajectory UML 

References

  1. 1.
    Andrienko, G., Andrienko, N., Demsar, U., Dransch, D., Dykes, J., Fabrikant, S.I., Jern, M., Kraak, M.J., Schumann, H., Tominski, C.: Space, time and visual analytics. Int. J. Geogr. Inf. Sci. 24(10), 1577–1600 (2010)CrossRefGoogle Scholar
  2. 2.
    Bach, B., Dachselt, R., Carpendale, S., Dwyer, T., Collins, C., Lee, B.: Immersive analytics: exploring future interaction and visualization technologies for data analytics. In: Proceedings of the 2016 ACM on Interactive Surfaces and Spaces, pp. 529–533. ACM (2016)Google Scholar
  3. 3.
    Bailey, K.D.: Typologies and Taxonomies: An Introduction to Classification Techniques, vol. 102. Sage, Thousand Oaks (1994)CrossRefGoogle Scholar
  4. 4.
    Bomphrey, R.J.: Insects in flight: direct visualization and ow measurements. Bioinspiration Biomim. 1(4), S1 (2006)CrossRefGoogle Scholar
  5. 5.
    Chen, Z., Wang, Y., Sun, T., Gao, X., Chen, W., Pan, Z., Qu, H., Wu, Y.: Exploring the design space of immersive urban analytics. Vis. Inf. 1(2), 132–142 (2017)CrossRefGoogle Scholar
  6. 6.
    Damiani, M., Issa, H., et al.: Moving objects beyond raw and semantic trajectories. In: International Workshop on Information Management for Mobile Applications (IMMoA 2013), vol. 1075, p. 4. CEUR (2013)Google Scholar
  7. 7.
    Henry, N.J.: A cost-effective workflow for depicting landscapes in immersive virtual environments. In: Ahlqvist, O., Schlieder, C. (eds.) Geogames and Geoplay, pp. 177–194. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-22774-0_9CrossRefGoogle Scholar
  8. 8.
    Hu, Y., et al.: A geo-ontology design pattern for semantic trajectories. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 438–456. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-01790-7_24CrossRefGoogle Scholar
  9. 9.
    Hussain, T.S., Roberts, B., Menaker, E.S., Coleman, S.L., Centreville, V.A., Pounds, K., Bowers, C., Cannon-Bowers, J.A., Koenig, A., Wainess, R., et al.: Designing and developing effective training games for the US Navy. M&S J. 27 (2012)Google Scholar
  10. 10.
    Inmon, W.-H.: Building the Data Warehouse, 3rd edn. Wiley, New York (2002)Google Scholar
  11. 11.
    Javed, W., Elmqvist, N.: Exploring the design space of composite visualization. In: 2012 IEEE Pacific Visualization Symposium (PacificVis), pp. 1–8. IEEE (2012)Google Scholar
  12. 12.
    Layouni, O., Akaichi, J.: A Conceptual UML Profile for Modeling Fuzzy Trajectory Data: An Ambulance Use Case (2016)Google Scholar
  13. 13.
    Leskens, J.G., Kehl, C., Tutenel, T., Kol, T., De Haan, G., Stelling, G., Eisemann, E.: An interactive simulation and visualization tool for flood analysis usable for practitioners. Mitig. Adapt. Strat. Glob. Change 22(2), 307–324 (2017)CrossRefGoogle Scholar
  14. 14.
    Manaa, M., Akaichi, J.: Ontology-based modeling and querying of trajectory data. Data Knowl. Eng. 111, 58–72 (2017)CrossRefGoogle Scholar
  15. 15.
    Marketos, G.: Data warehousing & mining techniques for moving object databases. Ph.D. thesis. Department of Informatics, University of Piraeus (2009)Google Scholar
  16. 16.
    Massaâbi, M., Layouni, O., Zekri, A., Aljeaid, M., Akaichi, J.: Regions trajectories data: evolution of modeling and construction methods. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) KES-IIMSS 2017. SIST, vol. 76, pp. 343–352. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-59480-4_34CrossRefGoogle Scholar
  17. 17.
    Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 77(12), 1321–1329 (1994)Google Scholar
  18. 18.
    Munzner, T.: Process and pitfalls in writing information visualization research papers. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 134–153. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70956-5_6CrossRefGoogle Scholar
  19. 19.
    Nguyen, H., Wang, F., Williams, R., Engelke, U., Kruger, A., de Souza, P.: Immersive Visual Analysis of Insect Flight Behaviour (2017)Google Scholar
  20. 20.
    Reyes, M.E.P., Chen, S.-C.: A 3D virtual environment for storm surge flooding animation. In: 2017 IEEE Third International Conference on Multimedia Big Data (BigMM), pp. 244–245. IEEE (2017)Google Scholar
  21. 21.
    Wolfson, O., Sistla, P., Xu, B., Zhou, J., Chamberlain, S.: DOMINO: databases for moving objects tracking. In: ACM SIGMOD (1999)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.BESTMOD Laboratory, Institut Supérieur de Gestion de TunisUniversity of TunisTunisTunisia
  2. 2.College of Computer ScienceKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations