Advertisement

Immersive Analytics for the Ecological Cognitive Stimulation Approach

  • Maroua Ayadi
  • Nouha Arfaoui
  • Jalel Akaichi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 840)

Abstract

The continuous attenuation of the old people’s cognitive functions is one of the most common problems encountered nowadays. However, the absence of curative treatments for the mild cognitive impairment like Alzheimer’s disease pushes the specialists to propose alternative solutions, for medicinal treatments, which can be based on tele-operating robots, remote monitoring platforms and software applications for cognitive stimulation.

In this paper, we move from the classic cognitive methods of the stimulation related to the old person to ecological solutions that exploit the person’s data to propose adaptive activities. Ecological solutions use environment, connected objects data and person profile, for building activities of the cognitive stimulation that adapts to the corresponding situation. To build activities, efficiently, we propose to exploit immersive analytics potential to analyze and visualize the available huge amount of data through constructing virtual environments for the simulations, leading to better decisions that may influence the life of the persons.

Keywords

Cognitive stimulation Immersive technology Personal assistance systems Application of cognitive stimulation 

References

  1. 1.
    Abellard, P., Abellard, A., Gangloff, J., Ciulli, A.: ATOLL: an elderly housing co-design software tool. Non-Pharmacol. Ther. Dement. 3(2), 97 (2012)Google Scholar
  2. 2.
    Bowman, D.A., McMahan, R.P.: Virtual reality: how much immersion is enough? Computer 40(7), 36–43 (2007)CrossRefGoogle Scholar
  3. 3.
    Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., Hart, J.C.: The CAVE: audio visual experience automatic virtual environment. Commun. ACM 35(6), 64–72 (1992)CrossRefGoogle Scholar
  4. 4.
    Chandler, T., Cordeil, M., Czauderna, T., Dwyer, T., Glowacki, J., Goncu, C., Wilson, E.: Immersive analytics. In: Big Data Visual Analytics (BDVA), pp. 1–8. IEEE, September 2015Google Scholar
  5. 5.
    Clare, L., Woods, R.: Cognitive training and cognitive rehabilitation for people with earlystage Alzheimer’s disease: a review. Neuropsychol. Rehabil. 14, 385–401 (2004)CrossRefGoogle Scholar
  6. 6.
    Croisile, B.: La stimulation de mémoire. Quel rationnel? Quels exercices? La Rev. de Gériatr. 31(6), 421–433 (2006)Google Scholar
  7. 7.
    Cruz-Neira, C., Leigh, J., Papka, M., Barnes, C., Cohen, S.M., Das, S., Vasilakis, C.: Scientists in wonderland: a report on visualization applications in the CAVE virtual reality environment. In: Proceedings of the IEEE 1993 Symposium on Research Frontiers in Virtual Reality, vol. 1, pp. 59–66, October 1993Google Scholar
  8. 8.
    Derouesné, C., Baudouin-Madec, V., Kerromes, I.: Prise en charge non médicamenteuse de la maladie d’Alzheimer: Maladie d’Alzheimer. La Rev. du Praticien 48(17), 1918–1922 (1998)Google Scholar
  9. 9.
    Destin Valéria, P.A.: MemAlz. Master HANDI. Sci. Technol. Santé 17 (2010)Google Scholar
  10. 10.
    Donalek, C., Djorgovski, S., Cioc, A., Wang, A., Zhang, J., Lawler, E., Yeh, S., Mahabal, A., Graham, M., Drake, A., Davidoff, S., Norris, J., Longo, G.: Immersive and collaborative data visualization using virtual reality platforms. In: IEEE International Conference on Big Data (Big Data), pp. 609–614 (2014)Google Scholar
  11. 11.
    Duchossoy, M., Roosen, C., Maranzana, N., Trivalle, C., Buisine, S.: Design of interactive stations for patients suffering from severe impairments caused by Alzheimer’s disease (the Tipatsma device). NPG Neurol.-Psychiatr.-Gériatr. 15(89), 281–289 (2015)CrossRefGoogle Scholar
  12. 12.
    Emmanuelle, G.-M.: Ateliers mémoire, 1st edn, p. 144. Editions Phalente, Paris (2012). ISBN 978-236835-000-3Google Scholar
  13. 13.
    Febretti, A., Nishimoto, A., Thigpen, T., Talandis, J., Long, L., Pirtle, J.D., Peterka, T., Verlo, A., Brown, M., Plepys, D., Sandin, D.: CAVE2: a hybrid reality environment for immersive simulation and information analysis. In: The Engineering Reality of Virtual Reality, vol. 8649, p. 864903. International Society for Optics and Photonics, March 2013Google Scholar
  14. 14.
    Has, S.D.: Diagnostic et prise en charge de la maladie d’Alzheimer et des maladies apparentées. Rev. Neurol. 164, 754–774 (2008)CrossRefGoogle Scholar
  15. 15.
    Hoppenot, P., Pino, M., Rigaud, A.S., Ozguler, A., Dubey, G., Cornet, G.: Assistance to the maintenance at home for mild cognitive impairment persons. IRBM 32(3), 172–175 (2011)CrossRefGoogle Scholar
  16. 16.
    Hugonot-Diener, L., Martin, M.L.: Qu’est-ce qu’un accueil de jour thérapeutique Alzheimer? NPG Neurol.-Psychiatr.-Gériatr. 12(72), 253–256 (2012)CrossRefGoogle Scholar
  17. 17.
    Isenberg, P., Isenberg, T., Hesselmann, T., Lee, B., Von Zadow, U., Tang, A.: Data visualization on interactive surfaces: a research agenda. IEEE Comput. Graph. Appl. 33(2), 16–24 (2013)CrossRefGoogle Scholar
  18. 18.
    Jonathan, S., Frank, B., Mark, R.L., et al.: Defining virtual reality: dimensions determining telepresence. Commun. Age Virtual Reality, 33–56 (1995)Google Scholar
  19. 19.
    Latfi, F., Lefebvre, B., Descheneaux, C.: Ontology-based management of the telehealth smart home, dedicated to elderly in loss of cognitive autonomy. In: OWLED, vol. 258, June 2007Google Scholar
  20. 20.
    Leedom, D.K.: Sensemaking Symposium: Final report. Command and Control Research Program of the Assistant Secretary of Defense for Command, Control, Communications and Intelligence, Vienna, Virginia, Retrieved, pp. 23–25, October 2001Google Scholar
  21. 21.
    LNCS. http://www.companionable.net. Accessed June 2017
  22. 22.
  23. 23.
    LNCS Homepage. http://www.kwido.com/fr/. Accessed Apr 2018
  24. 24.
  25. 25.
    LNCS. http://www.stimulationcognitive.fr. Accessed May 2016
  26. 26.
    LNCS Homepage. https://www.cognifit.com/fr. Accessed May 2017
  27. 27.
  28. 28.
    LNCS. http://www.editions-creasoft.com/. Accessed May 2017
  29. 29.
    Michel, C., Bobillier-Chaumon, M.E., Tarpin-Bernard, F.: Fracture numérique chez les seniors du 4e âge. Les Cahiers du Numérique 5(1), 147–168 (2009)CrossRefGoogle Scholar
  30. 30.
    Michel, C., Bobillier-Chaumon, M.-E., Cohen-Montandreau, V., Tarpin-Bernard, F.: Immersion de la personne âgée en maison de retraite: étude des incidences possibles des TIC dans sa (re)construction psychosociale in Université d’été du multimédia ludo-éducatif et pédagogique, Saint-Lizier, France, pp. 5–7, July 2006Google Scholar
  31. 31.
    Michel, C., Bobillier-Chaumon, M.E., Cohen Montandreau, V., Tarpin-Bernard, F.: Les personnes âgées en EHPAD. Les TIC sont-elles un mode de reliance sociale? In: Colloque sur les ENJEUX ET USAGES DES TIC: Reliance sociale et insertion professionnelle, EUTIC, Bruxelles, Belgique, pp. 13–15, September 2006Google Scholar
  32. 32.
    Minutolo, A., Sannino, G., Esposito, M., De Pietro, G.: A rule-based mHealth system for cardiac monitoring. In: IEEE EMBS Conference Biomedical Engineering and Sciences (IECBES), pp. 144–149, November 2010Google Scholar
  33. 33.
    Peretz, C., Korczyn, A.D., Shatil, E., Aharonson, V., Birnboim, S., Giladi, N.: Computer-based, personalized cognitive training versus classical computer games: a randomized double-blind prospective trial of cognitive stimulation. Neuroepidemiology 36(2), 91–99 (2011)CrossRefGoogle Scholar
  34. 34.
    Rotrou, J.: Stimulation et éducation cognitives. Gérontologie et société 24(2), 175–192 (2001)CrossRefGoogle Scholar
  35. 35.
    Simpson, M., Wallgrün, J.O., Klippel, A., Yang, L., Garner, G., Keller, K., Bansal, S.: Immersive analytics for multi-objective dynamic integrated climate-economy (DICE) models. In: Proceedings of the 2016 ACM Companion on Interactive Surfaces and Spaces, pp. 99–105. ACM, November 2016Google Scholar
  36. 36.
    Smith, J.W.: Immersive virtual environment technology to supplement environmental perception, preference and behavior research: a review with applications. Int. J. Environ. Res. Public Health 12(9), 11486–11505 (2015)CrossRefGoogle Scholar
  37. 37.
    Spector, A., Orrell, M., Woods, B.: Cognitive Stimulation Therapy (CST): effects on different areas of cognitive function for people with dementia. Int. J. Geriatr. Psychiatry 25(12), 1253–1258 (2010)CrossRefGoogle Scholar
  38. 38.
    Trellet, M.: Exploration et analyse immersives de données moléculaires guidées par la tâche et la modélisation sémantique des contenus. Doctoral dissertation, Université Paris-Saclay (2015)Google Scholar
  39. 39.
    Wenisch, E., Stoker, A., Bourrellis, C., Pasquet, C., Gauthier, E., Corcos, E., Rigaud, A.S.: Méthode de prise en charge globale non médicamenteuse des patients déments institutionnalisés. Rev. Neurol. 161(3), 290–298 (2005)CrossRefGoogle Scholar
  40. 40.
    Willemsen, P., Gooch A.: Perceived egocentric distances in real, image-based, and traditional virtual environments. In: Proceedings of the IEEE Virtual Reality Conference, Orlando, FL, USA, 24–28 March 2002, pp. 275–276, March 2002Google Scholar
  41. 41.
    Wu, Y.H., Wrobel, J., Cristancho-Lacroix, V., Kamali, L., Chetouani, M., Duhaut, D., Le Pevedic, B., Jost, C., Dupourque, V., Ghrissi, M., Rigaud, A.S.: Designing an assistive robot for older adults: the ROBADOM project. IRBM 34(2), 119–123 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.InterVPNCUniversity of JendoubaJendoubaTunisia
  2. 2.BESTMOD, Institut Superieur de GestionUniversity of TunisTunisTunisia

Personalised recommendations