Advertisement

Embodying Climate Change: Incorporating Full Body Tracking in the Design of an Interactive Rates of Change Greenhouse Gas Simulation

  • James Planey
  • Robb Lindgren
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 840)

Abstract

The ELASTIC3S project creates novel immersive simulations aimed at exploring in detail the connection between purposeful gesture and learning transfer across science content domains. This paper describes the theory and design behind the most recent addition: a dynamic, two-participant, gesture-controlled rates of change simulation addressing climate change through the lens of the greenhouse effect. Leveraging a flexible “one-shot” gesture recognition system and a 3-screen immersive simulation theater, participants work together to explore a representation of the greenhouse effect while embodying concepts of rates of change and dynamic equilibrium.

Keywords

Embodied learning Simulation theaters Embodied design Immersive learning Rates of change Science simulation Gesture 

References

  1. 1.
    Sullivan, J.V.: Learning and embodied cognition: a review and proposal. Psychol. Learn. Teach. 1475725717752550 (2018).  https://doi.org/10.1177/1475725717752550
  2. 2.
    Barsalou, L.W.: Grounded cognition: past, present, and future. Top. Cogn. Sci. 2, 716–724 (2010).  https://doi.org/10.1111/j.1756-8765.2010.01115.xCrossRefGoogle Scholar
  3. 3.
    Glenberg, A.M.: Embodiment as a unifying perspective for psychology. Wiley Interdiscip. Rev. Cogn. Sci. 1, 586–596 (2010).  https://doi.org/10.1002/wcs.55CrossRefGoogle Scholar
  4. 4.
    Wilson, M.: Six views of embodied cognition. Psychon. Bull. Rev. 9, 625–636 (2002).  https://doi.org/10.3758/BF03196322CrossRefGoogle Scholar
  5. 5.
    Shapiro, L.A.: Embodied cognition: lessons from linguistic determinism. Philos. Top. 39, 121–140 (2011)CrossRefGoogle Scholar
  6. 6.
    Ganis, G., Thompson, W.L., Kosslyn, S.M.: Brain areas underlying visual mental imagery and visual perception: an fMRI study. Cogn. Brain. Res. 20, 226–241 (2004).  https://doi.org/10.1016/j.cogbrainres.2004.02.012CrossRefGoogle Scholar
  7. 7.
    Hauk, O., Johnsrude, I., Pulvermüller, F.: Somatotopic representation of action words in human motor and premotor cortex. Neuron 41, 301–307 (2004).  https://doi.org/10.1016/S0896-6273(03)00838-9CrossRefGoogle Scholar
  8. 8.
    Pearson, J., Naselaris, T., Holmes, E.A., Kosslyn, S.M.: Mental imagery: functional mechanisms and clinical applications. Trends Cogn. Sci. 19, 590–602 (2015).  https://doi.org/10.1016/j.tics.2015.08.003CrossRefGoogle Scholar
  9. 9.
    Hostetter, A.B., Alibali, M.W.: Visible embodiment: gestures as simulated action. Psychon. Bull. Rev. 15, 495–514 (2008).  https://doi.org/10.3758/PBR.15.3.495CrossRefGoogle Scholar
  10. 10.
    Graham, T.A.: The role of gesture in children’s learning to count. J. Exp. Child Psychol. 74, 333–355 (1999).  https://doi.org/10.1006/jecp.1999.2520CrossRefGoogle Scholar
  11. 11.
    Alibali, M.W., Goldin-Meadow, S.: Gesture-speech mismatch and mechanisms of learning: what the hands reveal about a child′s state of mind. Cognit. Psychol. 25, 468–523 (1993).  https://doi.org/10.1006/cogp.1993.1012CrossRefGoogle Scholar
  12. 12.
    Gunderson, E.A., Spaepen, E., Gibson, D., Goldin-Meadow, S., Levine, S.C.: Gesture as a window onto children’s number knowledge. Cognition 144, 14–28 (2015).  https://doi.org/10.1016/j.cognition.2015.07.008CrossRefGoogle Scholar
  13. 13.
    Nathan, M.J.: Rethinking formalisms in formal education. Educ. Psychol. 47, 125–148 (2012).  https://doi.org/10.1080/00461520.2012.667063CrossRefGoogle Scholar
  14. 14.
    DeSutter, D., Stieff, M.: Teaching students to think spatially through embodied actions: design principles for learning environments in science, technology, engineering, and mathematics. Cogn. Res. 2, 22 (2017).  https://doi.org/10.1186/s41235-016-0039-yCrossRefGoogle Scholar
  15. 15.
    Lakoff, G., Johnson, M.: Metaphors We Live By (1980)Google Scholar
  16. 16.
    Roth, W.-M.: Gestures: their role in teaching and learning. Rev. Educ. Res. 71, 365–392 (2001).  https://doi.org/10.3102/00346543071003365CrossRefGoogle Scholar
  17. 17.
    Ibrahim-Didi, K., Hackling, M.W., Ramseger, J., Sherriff, B.: Embodied strategies in the teaching and learning of science. In: Hackling, M.W., Ramseger, J., Chen, H.-L.S. (eds.) Quality Teaching in Primary Science Education, pp. 181–221. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-44383-6_8CrossRefGoogle Scholar
  18. 18.
    Johnson, M.: The philosophical significance of image schemas. In: Perception to Meaning: Image Schemas in Cognitive Linguistics, pp. 15–33 (2005)Google Scholar
  19. 19.
    Niebert, K., Marsch, S., Treagust, D.F.: Understanding needs embodiment: a theory-guided reanalysis of the role of metaphors and analogies in understanding science. Sci. Educ. 96, 849–877 (2012).  https://doi.org/10.1002/sce.21026CrossRefGoogle Scholar
  20. 20.
    National Research Council: A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. National Academies Press (2012)Google Scholar
  21. 21.
    Morhpew, J., Lindgren, R., Alameh, S.: Embodied ideas of scale: learning and engagement with a whole-body science simulation. In: Annual Meeting American Educational Research Association (2018)Google Scholar
  22. 22.
    Tasquier, G., Levrini, O., Dillon, J.: Exploring students’ epistemological knowledge of models and modelling in science: results from a teaching/learning experience on climate change. Int. J. Sci. Educ. 38, 539–563 (2016).  https://doi.org/10.1080/09500693.2016.1148828CrossRefGoogle Scholar
  23. 23.
    Shaw, C., Nerlich, B.: Metaphor as a mechanism of global climate change governance: a study of international policies, 1992–2012. Ecol. Econ. 109, 34–40 (2015).  https://doi.org/10.1016/j.ecolecon.2014.11.001CrossRefGoogle Scholar
  24. 24.
    Atanasova, D., Koteyko, N.: Metaphors in guardian online and mail online opinion-page content on climate change: war, religion, and politics. Environ. Commun. 11, 452–469 (2017).  https://doi.org/10.1080/17524032.2015.1024705CrossRefGoogle Scholar
  25. 25.
    Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 77, 1321–1329 (1994)Google Scholar
  26. 26.
    Lindgren, R., Johnson-Glenberg, M.: Emboldened by embodiment: Six precepts for research on embodied learning and mixed reality. Educ. Res. 42, 445–452 (2013)CrossRefGoogle Scholar
  27. 27.
    Microsoft: Kinect for Windows SDK 2.0 Features (2017). https://msdn.microsoft.com/en-us/library/dn782025.aspx. Accessed 12 Mar 2018
  28. 28.
    Junokas, M.J., Kohlburn, G., Kumar, S., Lane, B., Fu, W.T., Lindgren, R.: Using one-shot machine learning to implement real-time multimodal learning analytics. In: CEUR Workshop Proceedings, vol. 1828, pp. 89–93 (2017)Google Scholar
  29. 29.
    Shepardson, D.P., Niyogi, D., Choi, S., Charusombat, U.: Students’ conceptions about the greenhouse effect, global warming, and climate change. Clim. Change 104, 481–507 (2011). http://dx.doi.org.proxy2.library.illinois.edu/10.1007/s10584-009-9786-9CrossRefGoogle Scholar
  30. 30.
    Niebert, K., Gropengießer, H.: Understanding the greenhouse effect by embodiment – analysing and using students’ and scientists’ conceptual resources. Int. J. Sci. Educ. 36, 277–303 (2014).  https://doi.org/10.1080/09500693.2013.763298CrossRefGoogle Scholar
  31. 31.
    Guy, S., Kashima, Y., Walker, I., Neill, S.: Comparing the atmosphere to a bathtub: effectiveness of analogy for reasoning about accumulation. Clim. Change 121, 579–594 (2013).  https://doi.org/10.1007/s10584-013-0949-3CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations