Skip to main content

Significance of C4 Leaf Structure at the Tissue and Cellular Levels

  • Chapter
  • First Online:
The Leaf: A Platform for Performing Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 44))

Summary

The CO2 concentrating mechanism (CCM) in C4 plants requires a complex coordination of both leaf anatomical and biochemical traits. While there are key traits common across the 60 plus C4 lineages, there is also significant structural and biochemical variation. Traditionally, C4 plants are described as one of three biochemical subtypes based on the primary enzyme used for C4 acid decarboxylation: NADP-malic enzyme (NADP-ME), NAD-malic enzyme (NAD-ME), and phosphoenolpyruvate carboxykinase (PCK). However, there may be biochemical flexibility and overlap between these subtypes. C4 plants typically rely on Kranz-type anatomy that partitions the C4 cycle into the mesophyll (M) cells and the majority of C3 cycle into the bundle-sheath (BS) cells. However, within the succulent Chenopods some NAD-ME type C4 plants use one of two single-cell arrangements to partition and compartmentalize the C4 and C3 cycles. Here we discuss key leaf anatomical traits at the tissue, cellular, and sub-cellular level that influence the efficiency and effectiveness of C4 photosynthesis. Specifically, we discuss preconditioning of leaf traits that increase the evolvability of C4 photosynthesis, the evolutionary transition of organelles from C3 to a C4 leaf, gas and metabolite movement within the leaf, the positioning and maintenance of organelles in M and BS cells, and the movement of M chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

abscisic acid

A net :

net rate of CO2 assimilation

BS:

bundle-sheath

C2 :

plants using a photorespiratory glycine shuttle to concentrate CO2

C3 :

plants without a CO2 concentrating mechanism

C4 :

plants using a 4-carbon CO2 concentrating mechanism

CA:

carbonic anhydrase

C a :

CO2 partial in the atmosphere

CAM:

crassulacean acid metabolism

CCM:

CO2 concentrating mechanism

C i :

CO2 partial pressure in the intercellular air space

CO2 :

carbon dioxide

δ13C:

the carbon isotope composition

Δ13C:

carbon isotope discrimination

E :

transpiration

g b :

boundary layer conductance

g bs :

conductance of CO2 between the BS and M cells or the corresponding cellular compartments in the single-cell C4 system

GDC:

glycine decarboxylase complex

g m :

internal conductance of CO2 from the inter-cellular airspace to the initial site of carboxylation

g s :

stomatal conductance to either CO2 or H2O

HCO3 - :

bicarbonate

IVD:

inter-veinal distances

K leaf :

total leaf water conductance

K p :

Michaelis-Menten constant of PEPC for HCO3 -

M:

mesophyll

m:

mitochondrion

Myr:

million years

NADP-ME:

NADP-malic enzyme

NAD-ME:

NAD-malic enzyme

NH4 + :

ammonium

p:

peroxisome

PCK:

phosphoenolpyruvate carboxykinase

PD:

plasmodesmata

PEP:

phosphoenolpyruvate

PEPC:

phosphoenolpyruvate carboxylase

Ï• :

leakiness

S bs :

the BS surface area per unit leaf area

S m :

M surface area exposed to the inter-cellular air space

V:

vascular bundle

V pmax :

in vitro maximum PEPC activity

References

  • Araus JL, Brown RH, Bouton JH, Serret MD (1990) Leaf anatomical characteristics in Flaveria trinervia (C4), Flaveria brownii (C4-like) and their F1 hybrid. Photosynth Res 26:49–57

    CAS  PubMed  Google Scholar 

  • Barbour MM, Evans JR, Simonin KA, von Caemmerer S (2016) Online CO2 and H2O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants. New Phytol 210:875–889

    Article  CAS  PubMed  Google Scholar 

  • Bellasio C, Lundgren MR (2016) Anatomical constraints to C4 evolution: light harvesting capacity in the bundle sheath. New Phytol 212:485–496

    Article  CAS  PubMed  Google Scholar 

  • Betti M, Bauwe H, Busch FA, Fernie AR, Keech O, Levey M et al (2016) Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement. J Exp Bot 67:2977–2988

    Article  CAS  PubMed  Google Scholar 

  • Brodribb TJ, Feild TS (2010) Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol Lett 13:175–183

    Article  PubMed  Google Scholar 

  • Brown RH, Hattersley PW (1989) Leaf anatomy of C3-C4 species as related to evolution of C4 photosynthesis. Plant Physiol 91:1543–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busch FA, Sage TL, Cousins AB, Sage RF (2013) C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ 36:200–212

    Article  CAS  PubMed  Google Scholar 

  • Cheng SH, Moore BD, Edwards GE, Ku MSB (1988) Photosynthesis in Flaveria brownii, a C4-like species: leaf anatomy, characteristics of CO2 exchange, compartmentation of photosynthetic enzymes, and metabolism of 14CO2. Plant Physiol 87:867–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christin PA, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodkinson TR et al (2013) Anatomical enablers and the evolution of C4 photosynthesis in grasses. Proc Natl Acad Sci U S A 110:1381–1386

    Article  CAS  PubMed  Google Scholar 

  • Chuong SDX, Franceschi VR, Edwards GE (2006) The cytoskeleton maintains organelle partitioning required for single-cell C4 photosynthesis in Chenopodiaceae species. Plant Cell 18:2207–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cousins AB, Badger MR, von Caemmerer S (2006) Carbonic anhydrase and its influence on carbon isotope discrimination during C4 photosynthesis. Insights from antisense RNA in Flaveria bidentis. Plant Physiol 141:232–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cousins AB, Baroli I, Badger MR, Ivakov A, Lea PJ, Leegood RC, von Caemmerer S (2007) The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. Plant Physiol 145:1006–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covshoff S, Hibberd JM (2012) Integrating C4 photosynthesis into C3 crops to increase yield potential. Curr Opin Biotechnol 23:209–214

    Article  CAS  PubMed  Google Scholar 

  • D’Andrea RM, Andreo CS, Lara MV (2014) Deciphering the mechanisms involved in Portulaca oleracea (C4) response to drought: metabolic changes including crassulacean acid-like metabolism induction and reversal upon re-watering. Physiol Plant 152:414–430

    Article  PubMed  CAS  Google Scholar 

  • Danila FR, Quick WP, White RG, Furbank RT, von Caemmerer S (2016) The metabolite pathway between bundle sheath and mesophyll: quantification of plasmodesmata in leaves of C3 and C4 monocots. Plant Cell 28:1461–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBlasio SL, Luesse DL, Hangarter RP (2005) A plant-specific protein essential for blue-light-induced chloroplast movements. Plant Physiol 139:101–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dengler NG, Nelson T (1999) Leaf structure and development in C4 plants. In: Sage RF, Monson RK (eds) C4 plant biology. Academic, San Diego, pp 133–172

    Chapter  Google Scholar 

  • Dengler NG, Dengler RE, Hattersley PW (1986) Comparative bundle sheath and mesophyll differentiation in the leaves of the C4 grasses Panicum effusum and P. bulbosum. Am J Bot 73:1431–1442

    Article  Google Scholar 

  • Dengler NG, Dengler RE, Donelly PM, Hattersley PW (1994) Quantitative leaf anatomy of C3 and C4 grasses (Poaceae): bundle sheath and mesophyll surface area relationships. Ann Bot 73:241–255

    Article  Google Scholar 

  • Eastman PAK, Dengler NG, Peterson CA (1988) Suberized bundle sheaths in grasses (Poaceae) of different photosynthetic types. I. Anatomy, ultrastructure and histochemistry. Protoplasma 142:92–111

    Article  CAS  Google Scholar 

  • Edwards EJ (2014) The inevitability of C4 photosynthesis. elife 3:e03702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edwards GE, Voznesenskaya EV (2011) C4 photosyntehsis: Kranz forms and single-cell C4 in terrestrial plants. In: Raghavendra AS, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms. Advances in photosynthesis and respiration, vol 32. Springer, Dordrecht, pp 29–61

    Chapter  Google Scholar 

  • Edwards GE, Furbank RT, Hatch MD, Osmond CB (2001) What does it take to be C4? Lessons from the evolution of C4 photosynthesis. Plant Physiol 125:46–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196

    Article  CAS  PubMed  Google Scholar 

  • Edwards EJ, Osborne CP, Stromberg CA, Smith SA, Consortium CG, Bond WJ et al (2010) The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–591

    Article  CAS  PubMed  Google Scholar 

  • Ellsworth PZ, Cousins AB (2016) Carbon isotopes and water use efficiency in C4 plants. Curr Opin Plant Biol 31:155–161

    Article  CAS  PubMed  Google Scholar 

  • Erlinghaeuser M, Hagenau L, Wimmer D, Offermann S (2016) Development, subcellular positioning and selective protein accumulation in the dimorphic chloroplasts of single-cell C4 species. Curr Opin Plant Biol 31:76–82

    Article  CAS  PubMed  Google Scholar 

  • Evans JR, von Caemmerer S (1996) Carbon dioxide diffusion inside leaves. Plant Physiol 110:339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans JR, von Caemmerer S, Setchell BA, Hudson GS (1994) The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Aust J Plant Physiol 21:475–495

    Article  CAS  Google Scholar 

  • Farquhar GD (1983) On the nature of carbon isotope discrimination in C4 species. Aust J Plant Physiol 10:205–226

    Article  CAS  Google Scholar 

  • Farquhar GD, Cernusak LA (2012) Ternary effects on the gas exchange of isotopologues of carbon dioxide. Plant Cell Environ 35:1221–1231

    Article  CAS  PubMed  Google Scholar 

  • Fladung M (1994) Genetic variants of Panicum maximum (Jacq.) in C4 photosynthetic traits. J Plant Physiol 143:165–172

    Article  CAS  Google Scholar 

  • Flexas J, Díaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbó M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriqui M, Diax-Espejo A et al (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193-194:70–84

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Scoffoni C, Gago J, Sack L (2013) Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. J Exp Bot 64:3965–3981

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Diaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J et al (2016) Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ 39:965–982

    Article  CAS  PubMed  Google Scholar 

  • Fouracre JP, Ando S, Langdale JA (2014) Cracking the Kranz enigma with systems biology. J Exp Bot 65:3327–3339

    Article  PubMed  Google Scholar 

  • Furbank RT (2011) Evolution of the C4 photosynthetic mechanism: are there really three C4 acid decarboxylation types? J Exp Bot 62:3103–3108

    Article  CAS  PubMed  Google Scholar 

  • Furbank RT, Jenkins CL, Hatch MD (1989) CO2 concentrating mechanism of C4 photosynthesis: permeability of isolated bundle sheath cells to inorganic carbon. Plant Physiol 91:1364–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillon JS, Yakir D (2000) Naturally low carbonic anhydrase activity in C4 and C3 plants limits discrimination against (COO)-O18 during photosynthesis. Plant Cell Environ 23:903–915

    Article  CAS  Google Scholar 

  • Griffiths H, Weller G, Toy LF, Dennis RJ (2013) You’re so vein: bundle sheath physiology, phylogeny and evolution in C3 and C4 plants. Plant Cell Environ 36:249–261

    Article  CAS  PubMed  Google Scholar 

  • Guralnick LJ, Edwards G, Ku MSB, Hockema B, Franceschi VR (2002) Photosynthetic and anatomical characteristics in the C4-crassulacean acid metabolism-cycling plant, Portulaca grandiflora. Funct Plant Biol 29:763–773

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez M, Gracen VE, Edwards GE (1974) Biochemical and cytological relationships in C4 plants. Planta 119:279–300

    Article  CAS  PubMed  Google Scholar 

  • Hasan R, Ohnuki Y, Kawasaki M, Taniguchi M, Miyake H (2005) Differential sensitivity of chloroplasts in mesophyll and bundle sheath cells in maize, an NADP-malic enzyme-type C4 plant, to salinity stress. Plant Prod Sci 8:567–577

    Article  CAS  Google Scholar 

  • Hasan R, Kawasaki M, Taniguchi M, Miyake H (2006) Salinity stress induces granal development in bundle sheath chloroplasts of maize, an NADP-malic enzyme-type C4 plant. Plant Prod Sci 9:256–265

    Article  CAS  Google Scholar 

  • Hassiotou F, Ludwig M, Renton M, Veneklaas EJ, Evans JR (2009) Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls. J Exp Bot 60:2303–2314

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama Y, Ueno O (2016) Intracellular position of mitochondria and chloroplasts in bundle sheath and mesophyll cells of C3 grasses in relation to photorespiratory CO2 loss. Plant Prod Sci 19:540–551

    Article  CAS  Google Scholar 

  • Hatch MD, Kagawa T, Craig S (1975) Subdivision of C4-pathway species based on differing C4 acid decarboxylating systems and ultrastructural features. Aust J Plant Physiol 2:111–128

    Article  CAS  Google Scholar 

  • Hatch MD, Agostino A, Jenkins CLD (1995) Measurement of the leakage of CO2 from bundle-sheath cells of leaves during C4 photosynthesis. Plant Physiol 108:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattersley PW, Browning AJ (1981) Occurrence of the suberized lamella in leaves of grasses of different photosynthetic types. I. In parenchymatous bundle sheaths and PCR ("Kranz") sheaths. Protoplasma 109:371–401

    Article  Google Scholar 

  • Heckmann D, Schulze S, Denton A, Gowik U, Westhoff P, Weber AP, Lercher MJ (2013) Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape. Cell 153:1579–1588

    Article  CAS  PubMed  Google Scholar 

  • Holaday AS, Lee KW, Chollet R (1984) C3-C4 intermediate species in the genus Flaveria: leaf anatomy, ultrastructure, and the effect of O2 on the CO2 compensation concentration. Planta 160:25–32

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Shibata K (1974) Comparative examination of terrestrial plant leaves in terms of light-induced absorption changes due to chloroplast rearrangements. Plant Cell Physiol 15:717–721

    Article  Google Scholar 

  • Jenkins CL, Furbank RT, Hatch MD (1989a) Inorganic carbon diffusion between C4 mesophyll and bundle sheath cells: direct bundle sheath CO2 assimilation in intact leaves in the presence of an inhibitor of the C4 pathway. Plant Physiol 91:1356–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins CL, Furbank RT, Hatch MD (1989b) Mechanism of C4 photosynthesis: a model describing the inorganic carbon pool in bundle sheath cells. Plant Physiol 91:1372–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanai R, Edwards GE (1999) The biochemistry of C4 photosynthesis. In: Sage R, Monson R (eds) C4 plant biology. Academic, San Diego, pp 49–87

    Chapter  Google Scholar 

  • Kandasamy MK, Meagher RB (1999) Actin-organelle interaction: association with chloroplast in Arabidopsis leaf mesophyll cells. Cell Motil Cytoskeleton 44:110–118

    Article  CAS  PubMed  Google Scholar 

  • Khoshravesh R, Stinson CR, Stata M, Busch FA, Sage RF, Ludwig M, Sage TL (2016) C3-C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis. J Exp Bot 67:3065–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King J, Edwards GE, Cousins AB (2012) The efficiency of the CO2-concentrating mechanism during single-cell C4 photosynthesis. Plant Cell Environ 35:513–523

    Article  CAS  PubMed  Google Scholar 

  • Kinsman EA, Pyke KA (1998) Bundle sheath cells and cell-specific plastid development in Arabidopsis leaves. Development 125:1815–1822

    CAS  PubMed  Google Scholar 

  • Kobayashi H, Yamada M, Taniguchi M, Kawasaki M, Sugiyama T, Miyake H (2009) Differential positioning of C4 mesophyll and bundle sheath chloroplasts: recovery of chloroplast positioning requires the actomyosin system. Plant Cell Physiol 50:129–140

    Article  CAS  PubMed  Google Scholar 

  • Kondo A, Kaikawa J, Funaguma T, Ueno O (2004) Clumping and dispersal of chloroplasts in succulent plants. Planta 219:500–506

    Article  CAS  PubMed  Google Scholar 

  • Kong SG, Wada M (2014) Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement. Biochim Biophys Acta 1837:522–530

    Article  CAS  PubMed  Google Scholar 

  • Königer M, Bollinger N (2012) Chloroplast movement behavior varies widely among species and does not correlate with high light stress tolerance. Planta 236:411–426

    Article  PubMed  CAS  Google Scholar 

  • Koteyeva NK, Voznesenskaya EV, Berry JO, Cousins AB, Edwards GE (2016) The unique structural and biochemical development of single cell C4 photosynthesis along longitudinal leaf gradients in Bienertia sinuspersici and Suaeda aralocaspica (Chenopodiaceae). J Exp Bot 67:2587–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kromdijk J, Ubierna N, Cousins AB, Griffiths H (2014) Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation. J Exp Bot 65:3443–3457

    Article  PubMed  Google Scholar 

  • Ku MSB, Wu JR, Dai ZY, Scott RA, Chu C, Edwards GE (1991) Photosynthetic and photorespiratory characteristics of Flaveria species. Plant Physiol 96:518–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal A, Edwards GE (1996) Analysis of inhibition of photosynthesis under water stress in the C4 species Amaranthus cruentus and Zea mays: electron transport, CO2 fixation and carboxylation capacity. Aust J Plant Physiol 23:403–412

    Article  CAS  Google Scholar 

  • Lara MV, Disante KB, Podesta FE, Andreo CS, Drincovich MF (2003) Induction of a Crassulacean acid like metabolism in the C4 succulent plant, Portulaca oleracea L.: physiological and morphological changes are accompanied by specific modifications in phosphoenolpyruvate carboxylase. Photosynth Res 77:241–254

    Article  CAS  PubMed  Google Scholar 

  • Lara MV, Drincovich MF, Andreo CS (2004) Induction of a crassulacean acid-like metabolism in the C4 succulent plant, Portulaca oleracea L.: study of enzymes involved in carbon fixation and carbohydrate metabolism. Plant Cell Physiol 45:618–626

    Article  CAS  PubMed  Google Scholar 

  • Lara MV, Offermann S, Smith M, Okita TW, Andreo CS, Edwards GE (2008) Leaf development in the single-cell C4 system in Bienertia sinuspersici: expression of genes and peptide levels for C4 metabolism in relation to chlorenchyma structure under different light conditions. Plant Physiol 148:593–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin RM, Stefano G, Ruckle ME, Stavoe AK, Sinkler CA, Brandizzi F et al (2016) REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment. Proc Natl Acad Sci U S A 113:E 1116–EE1125

    Article  CAS  Google Scholar 

  • Lin HC, Karki S, Coe RA, Bagha S, Khoshravesh R, Balahadia CP et al (2016) Targeted knockdown of GDCH in rice leads to a photorespiratory-deficient phenotype useful as a building block for C4 rice. Plant Cell Physiol 57:919–932

    Article  CAS  PubMed  Google Scholar 

  • Longstreth DJ, Hartsock TL, Nobel PS (1980) Mesophyll cell properties for some C3 and C4 species with high photosynthetic rates. Plant Physiol 48:494–498

    Article  Google Scholar 

  • Ma JY, Sun W, Koteyeva NK, Voznesenskaya E, Stutz SS, Gandin A et al (2016) Influence of light and nitrogen on the photosynthetic efficiency in the C4 plant Miscanthus x giganteus. Photosynth Res 131:1–13

    Article  PubMed  CAS  Google Scholar 

  • Maai E, Miyake H, Taniguchi M (2011a) Differential positioning of chloroplasts in C4 mesophyll and bundle sheath cells. Plant Signal Behav 6:1111–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maai E, Shimada S, Yamada M, Sugiyama T, Miyake H, Taniguchi M (2011b) The avoidance and aggregative movements of mesophyll chloroplasts in C4 monocots in response to blue light and abscisic acid. J Exp Bot 62:3213–3221

    Article  CAS  PubMed  Google Scholar 

  • McKown AD, Cochard H, Sack L (2010) Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. Am Nat 175:447–460

    Article  PubMed  Google Scholar 

  • Meinzer FC, Plaut Z, Saliendra NZ (1994) Carbon-isotope discrimination, gas-exchange, and growth of sugarcane cultivars under salinity. Plant Physiol 104:521–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mertz RA, Brutnell TP (2014) Bundle sheath suberization in grass leaves: multiple barriers to characterization. J Exp Bot 65:3371–3380

    Article  PubMed  Google Scholar 

  • Miyake H (2016) Starch accumulation in the bundle sheaths of C3 plants: a possible pre-condition for C4 photosynthesis. Plant Cell Physiol 57:890–896

    Article  CAS  PubMed  Google Scholar 

  • Miyake H, Maeda E (1976) Development of bundle sheath chloroplasts in rice seedlings. Can J Bot 54:556–565

    Article  Google Scholar 

  • Miyake H, Maeda E (1978) Starch accumulation in bundle sheath chloroplasts during leaf development of C3 and C4 plants of Gramineae. Can J Bot 56:880–882

    Article  Google Scholar 

  • Miyake H, Nakamura M (1993) Some factors concerning the centripetal disposition of bundle sheath chloroplasts during the leaf development of Eleusine coracana. Ann Bot 72:205–211

    Article  Google Scholar 

  • Miyake H, Yamamoto Y (1987) Centripetal disposition of bundle sheath chloroplasts during the leaf development of Eleusine coracana. Ann Bot 60:641–647

    Article  Google Scholar 

  • Miyake H, Furukawa A, Totsuka T (1985) Structural associations between mitochondria and chloroplasts in the bundle sheath cells of Portulaca Oleracea. Ann Bot 55:815–817

    Article  Google Scholar 

  • Muhaidat R, Sage RF, Dengler NG (2007) Diversity of Kranz anatomy and biochemistry in C4 eudicots. Am J Bot 94:362–381

    Article  CAS  PubMed  Google Scholar 

  • Muhaidat R, Sage TL, Frohlich M, Dengler NG, Sage RF (2011) Characterization of C3-C4 intermediate species in the genus Heliotropium L. (Boraginaceae): anatomy, ultrastructure and enzyme activity. Plant Cell Environ 34:1723–1736

    Article  CAS  PubMed  Google Scholar 

  • Munekage YN, Taniguchi YY (2016) Promotion of cyclic electron transport around photosystem I with the development of C4 photosynthesis. Plant Cell Physiol 57:897–903

    Article  CAS  PubMed  Google Scholar 

  • Offermann S, Okita TW, Edwards GE (2011) Resolving the compartmentation and function of C4 photosynthesis in the single-cell C4 species Bienertia sinuspersici. Plant Physiol 155:1612–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohsugi R, Murata T (1980) Leaf anatomy, post-illumination CO2 burst and NAD-malic enzyme activity of Panicum dichotomiflorum. Plant Cell Physiol 21:1329–1333

    Article  CAS  Google Scholar 

  • Ohsugi R, Samejima M, Chonan N, Murata T (1988) delta13C values and the occurrence of suberized lamellae in some Panicum species. Ann Bot 62:53–59

    Article  CAS  Google Scholar 

  • Ohsugi R, Ueno O, Komatsu T, Sasaki H, Murata T (1997) Leaf anatomy and carbon discrimination in NAD-malic enzyme Panicum species and their hybrids differing in bundle sheath cell ultrastructure. Ann Bot 79:179–184

    Article  CAS  Google Scholar 

  • Oikawa K, Matsunaga S, Mano S, Kondo M, Yamada K, Hayashi M et al (2015) Physical interaction between peroxisomes and chloroplasts elucidated by in situ laser analysis. Nat Plants 1:15035

    Article  CAS  PubMed  Google Scholar 

  • Omoto E, Kawasaki M, Taniguchi M, Miyake H (2009) Salinity induces granal development in bundle sheath chloroplasts of NADP-malic enzyme type C4 plants. Plant Prod Sci 12:199–207

    Article  CAS  Google Scholar 

  • Omoto E, Nagao H, Taniguchi M, Miyake H (2013) Localization of reactive oxygen species and change of antioxidant capacities in mesophyll and bundle sheath chloroplasts of maize under salinity. Physiol Plant 149:1–12

    Article  CAS  PubMed  Google Scholar 

  • Omoto E, Iwasaki Y, Miyake H, Taniguchi M (2016) Salinity induces membrane structure and lipid changes in maize mesophyll and bundle sheath chloroplasts. Physiol Plant 157:13–23

    Article  CAS  PubMed  Google Scholar 

  • Osborn HL, Alonso-Cantabrana H, Sharwood RE, Covshoff S, Evans JR, Furbank RT, von Caemmerer S (2017) Effects of reduced carbonic anhydrase activity on CO2 assimilation rates in Setaria viridis: a transgenic analysis. J Exp Bot 68:299–310

    Article  CAS  PubMed  Google Scholar 

  • Osborne CP, Sack L (2012) Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Philos Trans R Soc Lond Ser B Biol Sci 367:583–600

    Article  CAS  Google Scholar 

  • Park J, Knoblauch M, Okita T, Edwards G (2009) Structural changes in the vacuole and cytoskeleton are key to development of the two cytoplasmic domains supporting single-cell C4 photosynthesis in Bienertia sinuspersici. Planta 229:369–382

    Article  CAS  PubMed  Google Scholar 

  • Pengelly JJL, Sirault XRR, Tazoe Y, Evans JR, Furbank RT, von Caemmerer S (2010) Growth of the C4 dicot Flaveria bidentis: photosynthetic acclimation to low light through shifts in leaf anatomy and biochemistry. J Exp Bot 61:4109–4122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Sancho J, Tilsner J, Samuels AL, Botella MA, Bayer EM, Rosado A (2016) Stitching organelles: organization and function of specialized membrane contact sites in plants. Trends Cell Biol 26:705–717

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer M, Peisker M (1998) CO2 gas exchange and phosphenolpyruvate carboxylase activity in leaves of Zea mays L. Photosynth Res 58:281–291

    Article  CAS  Google Scholar 

  • Prendergast HDV, Hattersley PW, Stone NE (1987) New structural/biochemical associations in leaf blades of C4 grasses (Poaceae). Aust J Plant Physiol 14:403–420

    Article  CAS  Google Scholar 

  • Rojas-Pierce M, Whippo CW, Davis PA, Hangarter RP, Springer PS (2014) PLASTID MOVEMENT IMPAIRED1 mediates ABA sensitivity during germination and implicates ABA in light-mediated chloroplast movements. Plant Physiol Biochem 83:185–193

    Article  CAS  PubMed  Google Scholar 

  • Sack L, Holbrook NM (2006) Leaf hydraulics. Annu Rev Plant Biol 57:361–381

    Article  CAS  PubMed  Google Scholar 

  • Sack L, Scoffoni C (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 198:983–1000

    Article  PubMed  Google Scholar 

  • Sage RF (2001) Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biol 3:202–213

    Article  CAS  Google Scholar 

  • Sage R (2002) C4 photosynthesis in terrestrial plants does not require Kranz anatomy. Trends Plant Sci 7:283–285

    Article  CAS  PubMed  Google Scholar 

  • Sage TL, Sage RF (2009) The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice. Plant Cell Physiol 50:756–772

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Christin PA, Edwards EJ (2011a) The C4 plant lineages of planet Earth. J Exp Bot 62:3155–3169

    Article  CAS  PubMed  Google Scholar 

  • Sage TL, Sage RF, Vogan PJ, Rahman B, Johnson DC, Oakley JC, Heckel MA (2011b) The occurrence of C2 photosynthesis in Euphorbia subgenus Chamaesyce (Euphorbiaceae). J Exp Bot 62:3183–3195

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47

    Article  CAS  PubMed  Google Scholar 

  • Sage TL, Busch FA, Johnson DC, Friesen PC, Stinson CR, Stata M et al (2013) Initial events during the evolution of C4 photosynthesis in C3 species of Flaveria. Plant Physiol 163:1266–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage RF, Khoshravesh R, Sage TL (2014) From proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis. J Exp Bot 65:3341–3356

    Article  PubMed  Google Scholar 

  • Sakai Y, Takagi S (2005) Reorganized actin filaments anchor chloroplasts along the anticlinal walls of Vallisneria epidermal cells under high-intensity blue light. Planta 221:823–830

    Article  CAS  PubMed  Google Scholar 

  • Slewinski TL (2013) Using evolution as a guide to engineer Kranz-type C4 photosynthesis. Front Plant Sci 4:212

    PubMed  PubMed Central  Google Scholar 

  • Stata M, Sage TL, Rennie TD, Khoshravesh R, Sultmanis S, Khaikin Y et al (2014) Mesophyll cells of C4 plants have fewer chloroplasts than those of closely related C3 plants. Plant Cell Environ 37:2587–2600

    Article  CAS  PubMed  Google Scholar 

  • Stata M, Sage TL, Hoffmann N, Covshoff S, Ka-Shu Wong G, Sage RF (2016) Mesophyll chloroplast investment in C3, C4 and C2 species of the genus Flaveria. Plant Cell Physiol 57:904–918

    Article  CAS  PubMed  Google Scholar 

  • Stutz SS, Edwards GE, Cousins AB (2014) Single-cell C4 photosynthesis: efficiency and acclimation of Bienertia sinuspersici to growth under low light. New Phytol 202:220–232

    Article  CAS  PubMed  Google Scholar 

  • Takagi S (2003) Actin-based photo-orientation movement of chloroplasts in plant cells. J Exp Biol 206:1963–1969

    Article  CAS  PubMed  Google Scholar 

  • Takagi S, Takamatsu H, Sakurai-Ozato N (2009) Chloroplast anchoring: its implications for the regulation of intracellular chloroplast distribution. J Exp Bot 60:3301–3310

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi M, Sugiyama T (1997) The expression of 2-oxoglutarate/malate translocator in the bundle-sheath mitochondria of Panicum miliaceum, a NAD-malic enzyme-type C4 plant, is regulated by light and development. Plant Physiol 114:285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi Y, Taniguchi M, Kawasaki M, Miyake H (2003) Strictness of the centrifugal location of bundle sheath chloroplasts in different NADP-ME type C4 grasses. Plant Prod Sci 6:274–280

    Article  Google Scholar 

  • Tazoe Y, von Caemmerer S, Estavillo GM, Evans JR (2011) Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO2 diffusion dynamically at different CO2 concentrations. Plant Cell Environ 34:580–591

    Article  PubMed  Google Scholar 

  • Tolley BJ, Sage TL, Langdale JA, Hibberd JM (2012) Individual maize chromosomes in the C3 plant oat can increase bundle sheath cell size and vein density. Plant Physiol 159:1418–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubierna N, Gandin A, Boyd RA, Cousins AB (2017) Temperature response of mesophyll conductance in three C4 species calculated with two. Methods: 18O discrimination and in vitro V pmax. New Phytol 214:66–80

    Article  CAS  PubMed  Google Scholar 

  • Ueno O (1998) Induction of Kranz anatomy and C4-like biochemical characteristics in a submerged amphibious plant by abscisic acid. Plant Cell 10:571–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO publishing, Collingwood

    Google Scholar 

  • von Caemmerer S, Furbank RT (2003) The C4 pathway: an efficient CO2 pump. Photosynth Res 77:191–207

    Article  Google Scholar 

  • von Caemmerer S, Ludwig M, Millgate A, Farquhar GD, Price D, Badger M, Furbank RT (1997) Carbon isotope discrimination during C4 photosynthesis: insights from transgenic plants. Aust J Plant Physiol 24:487–494

    Article  Google Scholar 

  • von Caemmerer S, Hendrickson L, Quinn V, Vella N, Millgate AG, Furbank RT (2005) Reductions of Rubisco activase by antisense RNA in the C4 plant Flaveria bidentis reduces Rubisco carbamylation and leaf photosynthesis. Plant Physiol 137:747–755

    Article  CAS  Google Scholar 

  • von Caemmerer S, Edwards GE, Koteyeva NK, Cousins AB (2014a) Single cell C4 photosynthesis in aquatic and terrestrial plants: a gas exchange perspective. Aquat Bot 118:71–80

    Article  CAS  Google Scholar 

  • von Caemmerer S, Ghannoum O, Pengelly JJ, Cousins AB (2014b) Carbon isotope discrimination as a tool to explore C4 photosynthesis. J Exp Bot 65:3459–3470

    Article  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE (2001) Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414:543–546

    Article  CAS  PubMed  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Kiirats O, Artyusheva EG, Freitag H, Edwards GE (2002) Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J 31:649–662

    Article  CAS  PubMed  Google Scholar 

  • Voznesenskaya EV, Koteyeva NK, Chuong SD, Akhani H, Edwards GE, Franceschi VR (2005) Differentiation of cellular and biochemical features of the single-cell C4 syndrome during leaf development in Bienertia cycloptera (Chenopodiaceae). Am J Bot 92:1784–1795

    Article  CAS  PubMed  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Chuong SD, Edwards GE (2006) Functional characterization of phosphoenolpyruvate carboxykinase-type C4 leaf anatomy: immuno-, cytochemical and ultrastructural analyses. Ann Bot 98:77–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 24:455–468

    Article  CAS  Google Scholar 

  • Wang Y, Brautigam A, Weber AP, Zhu XG (2014a) Three distinct biochemical subtypes of C4 photosynthesis? A modelling analysis. J Exp Bot 65:3567–3578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Long SP, Zhu XG (2014b) Elements required for an efficient NADP-malic enzyme type C4 photosynthesis. Plant Physiol 164:2231–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiner H, Burnell JN, Woodrow IE, Heldt HW, Hatch MD (1988) Metabolite diffusion into bundle sheath cells from C4 plants: relation to C4 photosynthesis and plasmodesmatal function. Plant Physiol 88:815–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams DG, Gempko V, Fravolini A, Leavitt SW, Wall GW, Kimball PA, Pinter PJ, LaMorte R (2001) Carbon isotope discrimination by Sorghum bicolor under CO2 enrichment and drought. New Phytol 150:285–293

    Article  CAS  Google Scholar 

  • Yamada M, Kawasaki M, Sugiyama T, Miyake H, Taniguchi M (2009) Differential positioning of C4 mesophyll and bundle sheath chloroplasts: aggregative movement of C4 mesophyll chloroplasts in response to environmental stresses. Plant Cell Physiol 50:1736–1749

    Article  CAS  PubMed  Google Scholar 

  • Yamane K, Hayakawa K, Kawasaki M, Taniguchi M, Miyake H (2003) Bundle sheath chloroplasts of rice are more sensitive to drought stress than mesophyll chloroplasts. J Plant Physiol 160:1319–1327

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura Y, Kubota F, Ueno O (2004) Structural and biochemical bases of photorespiration in C4 plants: quantification of organelles and glycine decarboxylase. Planta 220:307–317

    Article  CAS  PubMed  Google Scholar 

  • Zhang JH, Jia WS, Yang JC, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Article  Google Scholar 

Download references

Acknowledgments

The research of ABC was supported by the Office of Biological and Environmental Research in the DOE Office of Science (DE-SC0008769) and MT was supported by JSPS KAKENHI Grant Numbers JP26292011 and JP16K14835.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mitsutaka Taniguchi or Asaph B. Cousins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taniguchi, M., Cousins, A.B. (2018). Significance of C4 Leaf Structure at the Tissue and Cellular Levels. In: Adams III, W., Terashima, I. (eds) The Leaf: A Platform for Performing Photosynthesis. Advances in Photosynthesis and Respiration, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-93594-2_9

Download citation

Publish with us

Policies and ethics