Trade-offs and Synergies in the Structural and Functional Characteristics of Leaves Photosynthesizing in Aquatic Environments

  • Stephen Christopher MaberlyEmail author
  • Brigitte Gontero
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 44)


Aquatic plants, comprising different divisions of embryophytes, derive from terrestrial ancestors. They have evolved to live in water, both fresh and salty, an environment that presents unique challenges and opportunities for photosynthesis and growth. These include, compared to air, a low water stress, a greater density, and attenuation of light, and a more variable supply of inorganic carbon, both in concentration and chemical species, but overall a lower carbon availability, and the opportunity to take up nutrients from the water. The leaves of many aquatic plants are linear, dissected, whorled, or cylindrical with a large volume of air spaces. They tend to have a high specific leaf area, thin cuticles, and usually lack functional stomata. Exploiting the availability of chemicals in their environment, freshwater macrophytes may incorporate silica in their cell wall, while seagrasses contain sulphated polysaccharides, similar to those of marine macroalgae; both groups have low lignin content. This altered cell wall composition produces plants that are more flexible and therefore more resistant to hydraulic forces (mechanical stress arising from water movement). Aquatic plants may have enhanced light harvesting complexes conferring shade adaptation, but also have mechanisms to cope with high light. Aquatic plants have evolved numerous strategies to overcome potential carbon-limitation in water. These include growing in micro-environments where CO2 is high, producing leaves and roots that exploit CO2 from the air or sediment and operating concentrating mechanisms that increase CO2 (CCM) around the primary carboxylating enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase. These comprise C4 metabolism, crassulacean acid metabolism, and the ability to exploit the often high concentrations of HCO3, and ~50% of freshwater macrophytes and ~85% of seagrasses have one or more CCM. Many of these adaptations involve trade-offs between conflicting constraints and opportunities while others represent ‘synergies’ that help to maximize the productivity of this important group of plants.









crassulacean acid metabolism


CO2-concentrating mechanism




E3 ubiquitin ligase constitutively photomorphogenic 1






Hydrilla verticillata malic enzyme isoform1


incident light at which respiratory CO2 generation is balanced by photosynthetic CO2 fixation


incident light at which photosynthetic CO2 fixation approaches saturation


light-harvesting chlorophyll-binding complex 1 of photosystem II


malic enzyme


nicotinamide adenine dinucleotide


nicotinamide adenine dinucleotide phosphate


phosphoenolpyruvate carboxylase


PEP carboxykinase


phosphoglyceric acid


pyruvate phosphate dikinase


reactive oxygen species


ribulose-1,5-bisphosphate carboxylase-oxygenase






ultraviolet radiation


UV-B photoreceptor UV resistance locus 8





We are extremely grateful to Marion Cambridge, Lukasz Kotula, Ole Pedersen, and Quing-Feng Wang for contributing photographs to Figs. 11.1 and 11.2, to Dina Ronzhina for giving permission to reproduce her drawings of leaf sections reproduced in Fig. 11.2 and to Hendrik Poorter for permission to reproduce Fig. 11.4. The Chinese Academy of Sciences is thanked for providing Visiting Professorships for Senior International Scientists and the President’s International Fellowship Initiative to the authors (2015VBA023, 2016VBA006). Stephen Maberly’s work is supported by the UK Natural Environment Research Council. Brigitte Gontero’s group is supported by Centre National de la Recherche Scientifique, Aix-Marseille Université, A*Midex project (No. ANR-11-IDEX-0001-02), Agence National de la Recherche (Signaux-BioNRJ, ANR-15-CE05-0021-03).


  1. Adams WW III, Muller O, Cohu CM, Demmig-Adams B (2013) May photoinhibition be a consequence, rather than a cause, of limited plant productivity? Photosynth Res 117:31–44PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aquino RS, Landeira-Fernandez AM, Valente AP, Andrade LR, Mourao PAS (2005) Occurrence of sulfated galactans in marine angiosperms: evolutionary implications. Glycobiology 15:11–20PubMedCrossRefGoogle Scholar
  3. Arber A (1920) Water plants: a study of Aquatic Angiosperms. Cambridge University Press, CambridgeGoogle Scholar
  4. Aulio K (1986) CAM-like photosynthesis in Littorella uniflora (L.) Aschers – the role of humidity. Ann Bot 58:273–275CrossRefGoogle Scholar
  5. Baattrup-Pedersen A, Madsen TV (1999) Interdependence of CO2 and inorganic nitrogen on crassulacean acid metabolism and efficiency of nitrogen use by Littorella uniflora (L.) Aschers. Plant Cell Environ 22:535–542CrossRefGoogle Scholar
  6. Bagger J, Madsen TV (2004) Morphological acclimation of aquatic Littorella uniflora to sediment CO2 concentration and wave exposure. Funct Ecol 18:946–951CrossRefGoogle Scholar
  7. Bain JT, Proctor MCF (1980) The requirement of aquatic bryophytes for free CO2 as an inorganic carbon source, some experimental evidence. New Phytol 86:393–400CrossRefGoogle Scholar
  8. Barko JW, Gunnison D, Carpenter SR (1991) Sediment interactions with submersed macrophyte growth and community dynamics. Aquat Bot 41:41–65CrossRefGoogle Scholar
  9. Beer S, Shomerilan A, Waisel Y (1980) Carbon metabolism in seagrasses. 2. Patterns of photosynthetic CO2 incorporation. J Exp Bot 31:1019–1026CrossRefGoogle Scholar
  10. Beer S, Waisel Y (1982) Effects of light and pressure on photosynthesis in 2 seagrasses. Aquat Bot 13:331–337CrossRefGoogle Scholar
  11. Beer S, Sandjensen K, Madsen TV, Nielsen SL (1991) The carboxylase activity of rubisco and the photosynthetic performance in aquatic plants. Oecologia 87:429–434PubMedCrossRefGoogle Scholar
  12. Benzecry A (2013) Field notes on Thalassia testudinum growing under stress conditions. Eur J Environ 1:7–10CrossRefGoogle Scholar
  13. Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925–1936PubMedPubMedCentralCrossRefGoogle Scholar
  14. Berveiller D, Damesin C (2008) Carbon assimilation by tree stems:potential involvement of phosphoenolpyruvate carboxylase. Trees- Struct Func 22:149–157CrossRefGoogle Scholar
  15. Binzer T, Sand-Jensen K, Middelboe A-L (2006) Community photosynthesis of aquatic macrophytes. Limnol Oceanogr 51:2722–2733CrossRefGoogle Scholar
  16. Black MA, Maberly SC, Spence DHN (1981) Resistance to carbon dioxide fixation in four submerged freshwater macrophytes. New Phytol 89:557–568CrossRefGoogle Scholar
  17. Bodkin PC, Spence DHN, Weeks DC (1980) Photoreversible control of heterophylly in Hippuris vulgaris L. New Phytol 84:533–542CrossRefGoogle Scholar
  18. Bornette G, Puijalon S (2011) Response of aquatic plants to abiotic factors: a review. Aquat Sci 73:1–14CrossRefGoogle Scholar
  19. Borum J, Pedersen O, Kotula L, Fraser MW, Statton J, Colmer TD, Kendrick GA (2015) Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species. Plant Cell Environ 39:1240–1250CrossRefGoogle Scholar
  20. Bowes G, Ogren WL, Hageman RH (1971) Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45:716–722PubMedCrossRefGoogle Scholar
  21. Bowes G, Ogren WL (1972) Oxygen inhibition and other properties of soybean ribulose 1,5-diphosphate carboxylase. J Biol Chem 247:2171–2176PubMedGoogle Scholar
  22. Bowes G, Rao SK, Estavillo GM, Reiskind JB (2002) C4 mechanisms in aquatic angiosperms: comparisons with terrestrial C4 systems. Funct Plant Biol 29:379–392CrossRefGoogle Scholar
  23. Bowes G (2011) Single-cell C4 photosynthesis in aquatic plants. In: Raghavendra AS, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms, pp 63–80Google Scholar
  24. Bristow JM (1969) The effects of carbon dioxide on the growth and development of amphibious plants. Can J Bot 47:1803–1807CrossRefGoogle Scholar
  25. Cao T, Ni L, Xie P, Xu J, Zhang M (2011) Effects of moderate ammonium enrichment on three submersed macrophytes under contrasting light availability. Freshw Biol 56:1620–1629CrossRefGoogle Scholar
  26. Carr H, Axelsson L (2008) Photosynthetic utilization of bicarbonate in Zostera marina is reduced by inhibitors of mitochondrial ATPase and electron transport. Plant Physiol 147:879–885PubMedPubMedCentralCrossRefGoogle Scholar
  27. Casati P, Lara MV, Andreo CS (2000) Induction of a C-4-like mechanism of CO2 fixation in Egeria densa, a submersed aquatic species. Plant Physiol 123:1611–1621PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chambers PA, Lacoul P, Murphy KJ, Thomaz SM (2008) Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595:9–26CrossRefGoogle Scholar
  29. Chen LY, Chen JM, Gituru RW, Wang QF (2012) Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae. BMC Evol Biol 12:30PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chollet R, Vidal J, Oleary MH (1996) Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Physiol Plant Mol Biol 47:273–298PubMedCrossRefGoogle Scholar
  31. Clement R, Dimnet L, Maberly SC, Gontero B (2016) The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana. New Phytol 209:1417–1427PubMedCrossRefGoogle Scholar
  32. Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570CrossRefGoogle Scholar
  33. Collen J, Porcel B, Carre W, Ball SG, Chaparro C, Tonon T,. .. Boyen C (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247--5252.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Colman JA, Sorsa K, Hoffmann JP, Smith CS, Andrews JH (1987) Yield- and photosynthesis-derived critical concentrations of tissue phosphorus and their significance for growth of Eurasian water milfoil, Myriophyllum spicatum. Aquat Bot 29:111–122CrossRefGoogle Scholar
  35. Colmer TD, Pedersen O (2008) Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. New Phytol 177:918–926PubMedCrossRefGoogle Scholar
  36. Cook CDK (1990) Aquatic plant book. SPB Publishing, The HagueGoogle Scholar
  37. Crawford RMM (1992) Oxygen availability as an ecological limit to plant distribution. Adv Ecol Res 23:93–185CrossRefGoogle Scholar
  38. Cushman JC, Borland AM (2002) Induction of Crassulacean acid metabolism by water limitation. Plant Cell Environ 25:295–310PubMedCrossRefGoogle Scholar
  39. Dacey JWH (1980) Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210:1017–1019PubMedCrossRefGoogle Scholar
  40. Dacey JWH (1981) Pressurized ventilation in the Yellow Waterlily. Ecology 62:1137–1147CrossRefGoogle Scholar
  41. Degroote D, Kennedy RA (1977) Photosynthesis In Elodea canadensis Michx: four-carbon acid synthesis. Plant Physiol 59:1133–1135PubMedPubMedCentralCrossRefGoogle Scholar
  42. Demars BOL, Edwards AC (2007) Tissue nutrient concentrations in freshwater aquatic macrophytes: high inter-taxon differences and low phenotypic response to nutrient supply. Freshw Biol 52:2073–2086CrossRefGoogle Scholar
  43. den Hartog C, Kuo J (2006) Taxonomy and biogeography of seagrasses. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 1–23Google Scholar
  44. Denny MW (1993) Air and water: the biology and physics of life’s media. Princeton University Press, PrincetonGoogle Scholar
  45. Denny P, Weeks DC (1970) Effects of light and bicarbonate on membrane potential in Potamogeton schweinfurthii (Benn). Ann Bot 34:483–496CrossRefGoogle Scholar
  46. Denny P (1980) Solute movement in submerged angiosperms. Biol Rev Camb Philos Soc 55:65–92CrossRefGoogle Scholar
  47. Deschamp PA, Cooke TJ (1983) Leaf dimorphism in aquatic angiosperms: significance of turgor pressure and cell expansion. Science 219:505–507PubMedCrossRefGoogle Scholar
  48. Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S et al (2016) The global spectrum of plant form and function. Nature 529:167–171PubMedCrossRefPubMedCentralGoogle Scholar
  49. Du Z-Y, Wang Q-F (2014) Correlations of life form, pollination mode and sexual system in aquatic angiosperms. Plos One 9:e115653PubMedPubMedCentralCrossRefGoogle Scholar
  50. Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8CrossRefGoogle Scholar
  51. Edwards D, Kerp H, Hass H (1998) Stomata in early land plants: an anatomical and ecophysiological approach. J Exp Bot 49:255–278CrossRefGoogle Scholar
  52. Edwards GE, Franceschi VR, Ku MSB, Voznesenskaya EV, Pyankov VI, Andreo CS (2001) Compartmentation of photosynthesis in cells and tissues of C4 plants. J Exp Bot 52:577–590PubMedGoogle Scholar
  53. Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196CrossRefGoogle Scholar
  54. Enriquez S, Duarte CM, SandJensen K, Nielsen SL (1996) Broad-scale comparison of photosynthetic rates across phototrophic organisms. Oecologia 108:197–206PubMedCrossRefGoogle Scholar
  55. Enriquez S (2005) Light absorption efficiency and the package effect in the leaves of the seagrass Thalassia testudinum. Mar Ecol Prog Ser 289:141–150CrossRefGoogle Scholar
  56. Espineira JM, Novo Uzal E, Gomez Ros LV, Carrion JS, Merino F, Ros Barcelo A, Pomar F (2011) Distribution of lignin monomers and the evolution of lignification among lower plants. Plant Biol 13:59–68PubMedCrossRefGoogle Scholar
  57. Estavillo GM, Rao SK, Reiskind JB, Bowes G (2007) Characterization of the NADP malic enzyme gene family in the facultative, single-cell C4 monocot Hydrilla verticillata. Photosynth Res 94:43–57PubMedCrossRefGoogle Scholar
  58. Farmer AM, Maberly SC, Bowes G (1986) Activities of carboxylation enzymes in freshwater macrophytes. J Exp Bot 37:1568–1573CrossRefGoogle Scholar
  59. Fondy BR, Geiger DR (1982) Diurnal pattern of translocation and carbohydrate-metabolism in source leaves of Beta vulgaris L. Plant Physiol 70:671–676PubMedPubMedCentralCrossRefGoogle Scholar
  60. Friis EM, Pedersen KR, Crane PR (2001) Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature 410:357–360PubMedCrossRefGoogle Scholar
  61. Frost-Christensen H, Jogensen LB, Floto F (2003) Species specificity of resistance to oxygen diffusion in thin cuticular membranes from amphibious plants. Plant Cell Environ 26:561–569CrossRefGoogle Scholar
  62. Gerloff GC, Krombholz PH (1966) Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants. Limnol Oceanogr 11:529–537CrossRefGoogle Scholar
  63. Germ M, Mazej Z, Gaberscik A, Hader DP (2002) The influence of enhanced UV-B radiation on Batrachium trichophyllum and Potamogeton alpinus - aquatic macrophytes with amphibious character. J Photochem Photobiol B Biol 66:37–46CrossRefGoogle Scholar
  64. Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131PubMedCrossRefGoogle Scholar
  65. Golicz AA, Schliep M, Lee HT, Larkum AWD, Dolferus R, Batley J et al (2015) Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network. J Exp Bot 66:1489–1498PubMedPubMedCentralCrossRefGoogle Scholar
  66. Gomez B, Daviero-Gomez V, Coiffard C, Martin-Closas C, Dilcher DL (2015) Montsechia, an ancient aquatic angiosperm. Proc Natl Acad Sci U S A 112:10985–10,988PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gontero B, Salvucci ME (2014) Regulation of photosynthetic carbon metabolism in aquatic and terrestrial organisms by Rubisco activase, redox-modulation and CP12. Aquat Bot 118:14–23CrossRefGoogle Scholar
  68. Graham L, Lewis LA, Taylor W, Wellman C, Cook M (2014) Early terrestrialization: transition from algal to bryophyte grade. In: Hanson DT, Rice SK (eds) Photosynthesis in Bryophytes and Early Land Plants. Springer, Dordercht, pp 9–28CrossRefGoogle Scholar
  69. Grasset C, Delolme C, Arthaud F, Bornette G (2015) Carbon allocation in aquatic plants with contrasting strategies: the role of habitat nutrient content. J Veg Sci 26:946–955CrossRefGoogle Scholar
  70. Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339CrossRefGoogle Scholar
  71. Grosse W, Buchel HB, Tiebel H (1991) Pressurized ventilation in wetland plants. Aquat Bot 39:89–98CrossRefGoogle Scholar
  72. Gu S, Yin L, Wang Q-f (2015) Phosphoenolpyruvate carboxylase in the stem of the submersed species Egeria densa may be involved in an inducible C4-like mechanism. Aquat Bot 125:1–8CrossRefGoogle Scholar
  73. Gutierre M, Gracen VE, Edwards GE (1974) Biochemical and cytological relationships in C4 plants. Planta 119:279–300CrossRefGoogle Scholar
  74. Hadj-Saïd J, Pandelia M-E, Léger C, Fourmond V, Dementin S (2015) The carbon monoxide dehydrogenase from Desulfovibrio vulgaris. Biochim Biophys Acta 1847:1574–1583PubMedCrossRefGoogle Scholar
  75. Hatch MD (1987) C4 Photosynthesis - a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta 895:81–106CrossRefGoogle Scholar
  76. Hellblom F, Beer S, Bjork M, Axelsson L (2001) A buffer sensitive inorganic carbon utilisation system in Zostera marina. Aquat Bot 69:55–62CrossRefGoogle Scholar
  77. Hellblom F, Axelsson L (2003) External HCO3 dehydration maintained by acid zones in the plasma membrane is an important component of the photosynthetic carbon uptake in Ruppia cirrhosa. Photosynth Res 77:173–181PubMedCrossRefGoogle Scholar
  78. Hibberd JM, Quick WP (2002) Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature 415:451–454PubMedCrossRefPubMedCentralGoogle Scholar
  79. Holaday AS, Bowes G (1980) C4 acid metabolism and dark CO2 fixation in a submersed aquatic macrophyte (Hydrilla verticillata). Plant Physiol 65:331–335PubMedPubMedCentralCrossRefGoogle Scholar
  80. Hsu JS, Powell J, Adler PB (2012) Sensitivity of mean annual primary production to precipitation. Global Change Biol 18:2246–2255CrossRefGoogle Scholar
  81. Hussner A, Hoelken HP, Jahns P (2010) Low light acclimated submerged freshwater plants show a pronounced sensitivity to increasing irradiances. Aquat Bot 93:17–24CrossRefGoogle Scholar
  82. Jackson MB (1985) Ethylene and responses of plants to soil waterlogging and submergence. Annu Rev Plant Physiol 36:145–174CrossRefGoogle Scholar
  83. Janauer GA, Englmaier P (1986) The effects of emersion on soluble carbohydrate accumulations in Hippuris vulgaris L. Aquat Bot 24:241–248CrossRefGoogle Scholar
  84. Johnson MP (1967) Temperature dependent leaf morphogenesis in Ranunculus flabellaris. Nature 214:1354–1355CrossRefGoogle Scholar
  85. Kane ME, Albert LS (1982) Growth regulators in aquatic plants: environmental and growth regulator effects on heterophylly and growth of Proserpinaca intermedia (Haloragaceae). Aquat Bot 13:73–85CrossRefGoogle Scholar
  86. Karlsson J, Bystrom P, Ask J, Ask P, Persson L, Jansson M (2009) Light limitation of nutrient-poor lake ecosystems. Nature 460:506–509CrossRefGoogle Scholar
  87. Keeley JE (1981) Isoetes howellii a submerged aquatic CAM plant. Am J Bot 68:420–424CrossRefGoogle Scholar
  88. Keeley JE, Mathews RP, Walker CM (1983) Diurnal acid metabolism in Isoetes howellii from a temporary pool and a permanent lake. Am J Bot 70:854–857CrossRefGoogle Scholar
  89. Keeley JE, Busch G (1984) Carbon assimilation characteristics of the aquatic CAM plant, Isoetes howellii. Plant Physiol 76:525–530PubMedPubMedCentralCrossRefGoogle Scholar
  90. Keeley JE (1998) CAM photosynthesis in submerged aquatic plants. Bot Rev 64:121–175CrossRefGoogle Scholar
  91. Keeley JE (2014) Aquatic CAM photosynthesis: a brief history of its discovery. Aquat Bot 118:38–44CrossRefGoogle Scholar
  92. Kirk JTO (2011) Light and photosynthesis in aquatic environments. Cambridge University Press, CambridgeGoogle Scholar
  93. Klančnik K, Pančić M, Gaberščik A (2014) Leaf optical properties in amphibious plant species are affected by multiple leaf traits. Hydrobiologia 737:121–130CrossRefGoogle Scholar
  94. Klavsen SK, Maberly SC (2009) Crassulacean acid metabolism contributes significantly to the in situ carbon budget in a population of the invasive aquatic macrophyte Crassula helmsii. Freshw Biol 54:105–118CrossRefGoogle Scholar
  95. Klavsen SK, Madsen TV, Maberly SC (2011) Crassulacean acid metabolism in the context of other carbon-concentrating mechanisms in freshwater plants: a review. Photosynth Res 109:269–279CrossRefGoogle Scholar
  96. Klavsen SK, Madsen TV (2012) Seasonal variation in crassulacean acid metabolism by the aquatic isoetid Littorella uniflora. Photosynth Res 112:163–173PubMedCrossRefGoogle Scholar
  97. Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological function of the matrix polysaccharides. Oceanogr Mar Biol 26:259–315Google Scholar
  98. Koch K, Kennedy RA (1980) Characteristics of crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L. Plant Physiol 65:193–197PubMedPubMedCentralCrossRefGoogle Scholar
  99. Koch M, Bowes G, Ross C, Zhang X-H (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol 19:103–132PubMedCrossRefGoogle Scholar
  100. Koi S, Ikeda H, Rutishauser R, Kato M (2015) Historical biogeography of river-weeds (Podostemaceae). Aquat Bot 127:62–69CrossRefGoogle Scholar
  101. Kovalenko KE, Thomaz SM, Warfe DM (2012) Habitat complexity: approaches and future directions. Hydrobiologia 685:1–17CrossRefGoogle Scholar
  102. Krause-Jensen D, Sand-Jensen K (1998) Light attenuation and photosynthesis of aquatic plant communities. Limnol Oceanogr 43:396–407CrossRefGoogle Scholar
  103. Kroth PG (2015) The biodiversity of carbon assimilation. J Plant Physiol 172:76–81PubMedCrossRefGoogle Scholar
  104. Kuo J, den Hartog C (2006) Seagrass morphology, anatomy, and ultrastructure. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 57–87Google Scholar
  105. Lara MV, Casati P, Andreo CS (2002) CO2 concentrating mechanisms in Egeria densa, a submersed aquatic plant. Physiol Plant 115:487–495PubMedCrossRefGoogle Scholar
  106. Larkum AWD, Davey PA, Kuo J, Ralph PJ, Raven JA (2017) Carbon-concentrating mechanisms in seagrasses. J Exp Bot 68:3773–3784PubMedCrossRefGoogle Scholar
  107. Lamb JB, van de Water JAJM, Bourne DG, Altier C, Hein MY, Fiorenza EA, Abu N, Jompa J, Harvell CD (2017) Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355:731–733PubMedCrossRefGoogle Scholar
  108. Lee K-S, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 350:144–175CrossRefGoogle Scholar
  109. Leegood RC (2013) Strategies for engineering C4 photosynthesis. J Plant Physiol 170:378–388PubMedCrossRefGoogle Scholar
  110. Les DH, Schneider EL (1995) The nymphaeales, alismatidae, and the theory of an aquatic monocotyledon origin. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew, pp 23–42Google Scholar
  111. Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22:443–463CrossRefGoogle Scholar
  112. Les DH, Tippery N (2013) In time and with water... the systematics of alismatid monocotyledons. In: Wilkin P, Mayo SJ (eds) Early events in monocot evolution. Cambridge University Press, Cambridge, pp 118–164CrossRefGoogle Scholar
  113. Les DH (2015) Water from the rock: ancient aquatic angiosperms flow from the fossil record. Proc Natl Acad Sci U S A 112:10825–10,826PubMedPubMedCentralCrossRefGoogle Scholar
  114. Lin B-L, Yang W-J (1999) Blue light and abscisic acid independently induce heterophyllous switch in Marsilea quadrifolia. Plant Physiol 119:429–434PubMedPubMedCentralCrossRefGoogle Scholar
  115. Lorimer GH, Miziorko HM (1980) Carbamate formation on the epsilon-amino group of a lysyl residue as the basis for the activation of ribulose bisphosphate carboxylase by CO2 and Mg2+. Biochemistry 19:5321–5328PubMedCrossRefPubMedCentralGoogle Scholar
  116. Lucas WJ, Smith FA (1973) Formation of alkaline and acid regions at surface of Chara corallina cells. J Exp Bot 24:1–14CrossRefGoogle Scholar
  117. Maberly SC, Spence DHN (1983) Photosynthetic inorganic carbon use by freshwater plants. J Ecol 71:705–724CrossRefGoogle Scholar
  118. Maberly SC (1985a) Photosynthesis by Fontinalis antpyretica. 1. Interaction between photon irradiance, concentration of carbon dioxide and temperature. New Phytol 100:127–140CrossRefGoogle Scholar
  119. Maberly SC (1985b) Photosynthesis by Fontinalis antipyretica 2. Assessment of environmental factors limiting photosynthesis and production. New Phytol 100:141–155CrossRefGoogle Scholar
  120. Maberly SC, Spence DHN (1989) Photosynthesis and photorespiration in freshwater organisms- amphibious plants. Aquat Bot 34:267–286CrossRefGoogle Scholar
  121. Maberly SC (1990) Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J Phycol 26:439–449CrossRefGoogle Scholar
  122. Maberly SC (1996) Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshw Biol 35:579–598CrossRefGoogle Scholar
  123. Maberly SC, Madsen TV (1998) Affinity for CO2 in relation to the ability of freshwater macrophytes to use HCO3. Funct Ecol 12:99–106CrossRefGoogle Scholar
  124. Maberly SC, Madsen TV (2002) Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Funct Plant Biol 29:393–405CrossRefGoogle Scholar
  125. Maberly SC (2014) The fitness of the environments of air and water for photosynthesis, growth, reproduction and dispersal of photoautotrophs: an evolutionary and biogeochemical perspective. Aquat Bot 118:4–13CrossRefGoogle Scholar
  126. Maberly SC, Berthelot SA, Stott AW, Gontero B (2015) Adaptation by macrophytes to inorganic carbon down a river with naturally variable concentrations of CO2. J Plant Physiol 172:120–127PubMedCrossRefGoogle Scholar
  127. Maberly SC, Gontero B (2017) Ecological imperatives for aquatic CO2-concentrating mechanisms. J Exp Bot 68:3797–3814CrossRefGoogle Scholar
  128. Madsen JD (1991) Ecology of submersed aquatic macrophytes resource allocation at the individual plant level. Aquat Bot 41:67–86CrossRefGoogle Scholar
  129. Madsen TV (1985) A community of submerged aquatic CAM plants in lake Kalgaard, Denmark. Aquat Bot 23:97–108CrossRefGoogle Scholar
  130. Madsen TV (1987a) Interactions between internal and external CO2 pools in the photosynthesis of the aquatic CAM plants Littorella uniflora (L) Aschers and Isoetes lacustris L. New Phytol 106:35–50CrossRefGoogle Scholar
  131. Madsen TV (1987b) The effect of different growth conditions on dark and light carbon assimilation in Littorella uniflora. Physiol Plant 70:183–188CrossRefGoogle Scholar
  132. Madsen TV, Maberly SC (1991) Diurnal variation in light and carbon limitation of photosynthesis by two species of submerged freshwater macrophyte with a differential ability to use bicarbonate. Freshw Biol 26:175–187CrossRefGoogle Scholar
  133. Madsen TV, Breinholt M (1995) Effects of air contact on growth, inorganic carbon sources and nitrogen uptake by an amphibous freshwater macrophyte. Plant Physiol 107:149–154PubMedPubMedCentralCrossRefGoogle Scholar
  134. Madsen TV, Cedergreen N (2002) Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshw Biol 47:283–291CrossRefGoogle Scholar
  135. Madsen TV, Olesen B, Bagger J (2002) Carbon acquisition and carbon dynamics by aquatic isoetids. Aquat Bot 73:351–371CrossRefGoogle Scholar
  136. Madsen TV, Maberly SC (2003) High internal resistance to CO2 uptake by submerged macrophytes that use HCO3 : measurements in air, nitrogen and helium. Photosynth Res 77:183–190PubMedCrossRefGoogle Scholar
  137. Magnin NC, Cooley BA, Reiskind JB, Bowes G (1997) Regulation and localization of key enzymes during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticillata. Plant Physiol 115:1681–1689PubMedPubMedCentralCrossRefGoogle Scholar
  138. McConnaughey T (1991) Calcification in Chara corallina: CO2 hydroxylation generates protons for bicarbonate assimilation. Limnol Oceanogr 36:619–628CrossRefGoogle Scholar
  139. Meybeck M (1979) Major elements contents of river waters and dissolved inputs to the oceans. Rev. Geol Dyn Geogr Phys 21:215–246Google Scholar
  140. Meyer M, Griffiths H (2013) Origins and diversity of eukaryotic CO2 concentrating mechanisms: lessons for the future. J Exp Bot 64:769–786PubMedCrossRefGoogle Scholar
  141. Middelboe AL, Markager S (1997) Depth limits and minimum light requirements of freshwater macrophytes. Freshw Biol 37:553–568CrossRefGoogle Scholar
  142. Miler O, Albayrak I, Nikora V, O’Hare M (2012) Biomechanical properties of aquatic plants and their effects on plant-flow interactions in streams and rivers. Aquat Sci 74:31–44CrossRefGoogle Scholar
  143. Moller CL, Sand-Jensen K (2011) High sensitivity of Lobelia dortmanna to sediment oxygen depletion following organic enrichment. New Phytol 190:320–331PubMedCrossRefPubMedCentralGoogle Scholar
  144. Morris DP, Zagarese H, Williamson CE, Balseiro EG, Hargreaves BR, Modenutti B et al (1995) The attentuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr 40:1381–1391CrossRefGoogle Scholar
  145. Newman JR, Raven JA (1995) Photosynthetic carbon assimilation by Crassula helmsii. Oecologia 101:494–499PubMedCrossRefGoogle Scholar
  146. Nielsen LT, Borum J (2008) Why the free floating macrophyte Stratiotes aloides mainly grows in highly CO2-supersaturated waters. Aquat Bot 89:379–384CrossRefGoogle Scholar
  147. Nielsen SL, Nielsen HD (2006) Pigments, photosynthesis and photoinhibition in two amphibious plants: consequences of varying carbon availability. New Phytol 170:311–319PubMedCrossRefGoogle Scholar
  148. Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 154:555–561PubMedPubMedCentralCrossRefGoogle Scholar
  149. Offermann S, Okita TW, Edwards GE (2011) Resolving the compartmentation and function of C4 photosynthesis in the single-cell C4 species Bienertia sinuspersici. Plant Physiol 155:1612–1628PubMedPubMedCentralCrossRefGoogle Scholar
  150. Olsen JL, Rouzé P, Verhelst B, Lin Y-C, Bayer T, Collen J et al (2016) The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530:331–335PubMedCrossRefGoogle Scholar
  151. Osmond CB (1984) CAM: regulated photosynthetic metabolism for all seasons. In: Sybesma C (ed) Advances in photosynthesis research. Junk, The Hague, pp 557–563CrossRefGoogle Scholar
  152. Pagani M, Caldeira K, Berner R, Beerling DJ (2009) The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years. Nature 460:85–88PubMedCrossRefGoogle Scholar
  153. Papenbrock J Highlights in seagrasses’ phylogeny, physiology, and metabolism: what makes them special? ISRN Bot 2012, 2012:103892Google Scholar
  154. Pearcy RW (1990) Sunflecks and photosynthesis in plant canopies. Annu Rev Plant Physiol Plant Mol Biol 41:421–453CrossRefGoogle Scholar
  155. Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699PubMedCrossRefGoogle Scholar
  156. Pedersen O (1993) Long-distance water transport in aquatic plants. Plant Physiol 103:1369–1375PubMedPubMedCentralCrossRefGoogle Scholar
  157. Pedersen O, Rich SM, Pulido C, Cawthray GR, Colmer TD (2011a) Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis. New Phytol 190:332–339PubMedPubMedCentralCrossRefGoogle Scholar
  158. Pedersen O, Pulido C, Rich SM, Colmer TD (2011b) In situ O2 dynamics in submerged Isoetes australis: varied leaf gas permeability influences underwater photosynthesis and internal O2. J Exp Bot 62:4691–4700PubMedPubMedCentralCrossRefGoogle Scholar
  159. Pierce S, Brusa G, Sartori M, Cerabolini BEL (2012) Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Ann Bot 109:1047–1053PubMedPubMedCentralCrossRefGoogle Scholar
  160. Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588PubMedCrossRefGoogle Scholar
  161. Prins HBA, Snel JFH, Helder RJ, Zanstra PE (1980) Photosynthetic HCO3 utilization and OH excretion in aquatic angiosperms: light induced pH changes at the leaf surface. Plant Physiol 66:818–822PubMedPubMedCentralCrossRefGoogle Scholar
  162. Prins HBA, Snel JFH, Zanstra PE, Helder RJ (1982) The mechanisms of bicarbonate assimilation by the polar leaves of Potamogeton and Elodea: CO2 concentrations at the leaf surface. Plant Cell Environ 5:207–214CrossRefGoogle Scholar
  163. Prins HBA, Deguia MB (1986) Carbon source of the water soldier, Stratiotes aloides L. Aquat Bot 26:225–234CrossRefGoogle Scholar
  164. Prins HBA, Elzenga JTM (1989) Bicarbonate utilization: function and mechanism. Aquat Bot 34:59–83CrossRefGoogle Scholar
  165. Puijalon S, Bouma TJ, Douady CJ, van Groenendael J, Anten NP, Martel E, Bornette G (2011) Plant resistance to mechanical stress: evidence of an avoidance-tolerance trade-off. New Phytol 191:1141–1149PubMedCrossRefGoogle Scholar
  166. Rao SK, Magnin NC, Reiskind JB, Bowes G (2002) Photosynthetic and other phosphoenolpyruvate carboxylase isoforms in the single-cell, facultative C4 system of Hydrilla verticillata. Plant Physiol 130:876–886PubMedPubMedCentralCrossRefGoogle Scholar
  167. Rao SK, Fukayama H, Reiskind JB, Miyao M, Bowes G (2006) Identification of C4 responsive genes in the facultative C4 plant Hydrilla verticillata. Photosynth Res 88:173–183PubMedCrossRefGoogle Scholar
  168. Raven JA (1970) Exogenous inorganic carbon sources in plant photosynthesis. Biol Rev Camb Philos Soc 45:167–221CrossRefGoogle Scholar
  169. Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207CrossRefGoogle Scholar
  170. Raven JA, Lucas WJ (1985) Energy cost of carbon acquisition. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. American Society of plant physiologists, Rockville, pp 305–324Google Scholar
  171. Raven JA, Handley LL, Macfarlane JJ, McInroy S, McKenzie L, Richards JH, Samuelsson G (1988) The role of CO2 uptake by roots and CAM in acquisition of inorganic C by plants of the isoetid life-form- A review with new data on Eriocaulon decangulare L. New Phytol 108:125–148CrossRefGoogle Scholar
  172. Raven JA (2008) Not drowning but photosynthesizing: probing plant plastrons. New Phytol 177:841–845PubMedCrossRefGoogle Scholar
  173. Raven JA, Cockell CS, De La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos Trans R Soc Lond Ser B Biol Sci 363:2641–2650CrossRefGoogle Scholar
  174. Raven JA, Giordano M, Beardall J, Maberly SC (2011) Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth Res 109:281–296PubMedCrossRefGoogle Scholar
  175. Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos Trans R Soc Lond Ser B Biol Sci 367:493–507CrossRefGoogle Scholar
  176. Reinfelder JR (2011) Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu Rev Mar Sci 3:291–315CrossRefGoogle Scholar
  177. Reiskind JB, Bowes G (1991) The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc Natl Acad Sci USA 88:2883–2887PubMedCrossRefGoogle Scholar
  178. Reiskind JB, Madsen TV, VanGinkel LC, Bowes G (1997) Evidence that inducible C4 type photosynthesis is a chloroplastic CO2 concentrating mechanism in Hydrilla, a submersed monocot. Plant Cell Environ 20:211–220CrossRefGoogle Scholar
  179. Rizzini L, Favory J-J, Cloix C, Faggionato D, O’Hara A, Kaiserli E,... Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 Protein. Science 332:103--106.CrossRefGoogle Scholar
  180. Robe WE, Griffiths H (1998) Adaptations for an amphibious life: changes in leaf morphology, growth rate, carbon and nitrogen investment, and reproduction during adjustment to emersion by the freshwater macrophyte Littorella uniflora. New Phytol 140:9–23CrossRefGoogle Scholar
  181. Robe WE, Griffiths H (2000) Physiological and photosynthetic plasticity in the amphibious, freshwater plant, Littorella uniflora, during the transition from aquatic to dry terrestrial environments. Plant Cell Environ 23:1041–1054CrossRefGoogle Scholar
  182. Roberts K, Granum E, Leegood RC, Raven JA (2007) Carbon acquisition by diatoms. Photosynth Res 93:79–88PubMedCrossRefGoogle Scholar
  183. Ronzhina DA, P’Yankov VI (2001) Structure of the photosynthetic apparatus in leaves of freshwater hydrophytes: 2. Quantitative characterisation of leaf mesophyll and the functional activity of leaves with different degress of submersion. Russ J Plant Physiol 48:567–575CrossRefGoogle Scholar
  184. Ronzhina DA, Ivanov LA, Lambers G, VI P’y (2009) Changes in chemical composition of hydrophyte leaves during adaptation to aquatic environment. Russ J Plant Physiol 56:355–362CrossRefGoogle Scholar
  185. Ronzhina DA, Ivanov LA (2014) Construction costs and mesostructure of leaves in hydrophytes. Russ J Plant Physiol 61:776–783CrossRefGoogle Scholar
  186. Rose CD, Durako MJ (1994) Induced photomorphogenesis by an altered R:FR light ratio in axenic Ruppia maritima L. Bot Mar 37:531–535CrossRefGoogle Scholar
  187. Rudall PJ, Knowles EVW (2013) Ultrastructure of stomatal development in early-divergent angiosperms reveals contrasting patterning and pre-patterning. Ann Bot 112:1031–1043PubMedPubMedCentralCrossRefGoogle Scholar
  188. Runions A, Tsiantis M, Prusinkiewicz P (2017) A common developmental program can produce diverse leaf shapes. New Phytol 216:401–418PubMedPubMedCentralCrossRefGoogle Scholar
  189. Ruszala EM, Beerling DJ, Franks PJ, Chater C, Casson SA, Gray JE, Hetherington AM (2011) Land plants acquired active stomatal control early in their evolutionary history. Curr Biol 21:1030–1035PubMedCrossRefGoogle Scholar
  190. Sage RF (2002) Are crassulacean acid metabolism and C4 photosynthesis incompatible? Funct Plant Biol 29:775–785CrossRefGoogle Scholar
  191. Sage RF, Kubien DS (2003) Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth Res 77:209–225PubMedCrossRefGoogle Scholar
  192. Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370CrossRefGoogle Scholar
  193. Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 Photosynthesis. In: Merchant SS (ed) Annual review of plant biology, vol 63, pp 19–47Google Scholar
  194. Salvucci ME, Bowes G (1981) Induction of reduced photorespiratory activity in submersed and amphibious aquatic macrophytes. Plant Physiol 67:335–340PubMedPubMedCentralCrossRefGoogle Scholar
  195. Sand-Jensen K (1977) Effect of epiphytes on eelgrass photosynthesis. Aquat Bot 3:55–63CrossRefGoogle Scholar
  196. Sand-Jensen K, Prahl C, Stokholm H (1982) Oxygen release from roots of submerged aquatic macrophytes. Oikos 38:349–354CrossRefGoogle Scholar
  197. Sand-Jensen K, Gordon DM (1986) Variable HCO3 affinity of Elodea canadensis Michaux in response to different HCO3 and CO2 concentrations during growth. Oecologia 70:426–432CrossRefGoogle Scholar
  198. Sand-Jensen K (1998) Influence of submerged macrophytes on sediment composition and near-bed flow in lowland streams. Freshw Biol 39:663–679CrossRefGoogle Scholar
  199. Sand-Jensen K, Binzer T, Middelboe AL (2007) Scaling of photosynthetic production of aquatic macrophytes - a review. Oikos 116:280–294Google Scholar
  200. Sand-Jensen K, Pedersen ML (2008) Streamlining of plant patches in streams. Freshw Biol 53:714–726CrossRefGoogle Scholar
  201. Sand-Jensen K, Moller CL (2014) Reduced root anchorage of freshwater plants in sandy sediments enriched with fine organic matter. Freshw Biol 59:427–437CrossRefGoogle Scholar
  202. Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilbria in shallow lakes. Trends Ecol Evol 8:275–279PubMedCrossRefGoogle Scholar
  203. Schoelynck J, Bal K, Backx H, Okruszko T, Meire P, Struyf E (2010) Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose. New Phytol 186:385–391PubMedCrossRefGoogle Scholar
  204. Schoelynck J, Puijalon S, Meire P, Struyf E (2015) Thigmomorphogenetic responses of an aquatic macrophyte to hydrodynamic stress. Front Plant Sci 6.
  205. Schroder P, Grosse W, Woermann D (1986) Localization of thermo-osmotically active partitions in young leaves of Nuphar lutea. J Exp Bot 37:1450–1461CrossRefGoogle Scholar
  206. Schubert H, Sagert S, Forster RM (2014) Evaluation of the different levels of variability in the underwater light field of a shallow estuary. Helgol Mar Res 55:12–22CrossRefGoogle Scholar
  207. Schutten J, Dainty J, Davy AJ (2004) Wave-induced hydraulic forces on submerged aquatic plants in shallow lakes. Ann Bot 93:333–341PubMedPubMedCentralCrossRefGoogle Scholar
  208. Sculthorpe CD (1967) The biology of aquatic vascular plants. Edward Arnold, LondonGoogle Scholar
  209. Shao H, Gontero B, Maberly SC, Jiang HS, Cao Y, Li W, Huang WM (2017) Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light. J Exp Bot 68:3985–3995PubMedPubMedCentralCrossRefGoogle Scholar
  210. Sharkey TD, Weise SE, Standish AJ, Terashima I (2004) Chloroplast to leaf. In: Smith WK, Vogelmann TC, Critchley C (eds) Photosynthetic adaptation, vol 178. Springer, New York, pp 171–206CrossRefGoogle Scholar
  211. Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol 350:3–20CrossRefGoogle Scholar
  212. Silva TH, Alves A, Popa EG, Reys LL, Gomes ME, Sousa RA et al (2012) Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2:278–289PubMedPubMedCentralCrossRefGoogle Scholar
  213. Silva TSF, Melack JM, Novo EMLM (2013) Responses of aquatic macrophyte cover and productivity to flooding variability on the Amazon floodplain. Glob Chang Biol 19:3379–3389PubMedGoogle Scholar
  214. Silvera K, Neubig KM, Whitten WM, Williams NH, Winter K, Cushman JC (2010) Evolution along the crassulacean acid metabolism continuum. Funct Plant Biol 37:995–1010CrossRefGoogle Scholar
  215. Soana E, Bartoli M (2013) Seasonal variation of radial oxygen loss in Vallisneria spiralis L.: an adaptive response to sediment redox? Aquat Bot 104:228–232CrossRefGoogle Scholar
  216. Sondergaard M, Sand-Jensen K (1979) Carbon uptake by leaves and roots of Littorella uniflora (L) Aschers. Aquat Bot 6:1–12CrossRefGoogle Scholar
  217. Spence DHN, Chrystal J (1970a) Photosynthesis and zonation of freshwater macrophytes. 1. Depth distribution and shade tolerance. New Phytol 69:205–215CrossRefGoogle Scholar
  218. Spence DHN, Chrystal J (1970b) Photosynthesis and zonation of fresh-water macrophytes. 2. Adaptability of species of deep and shallow water. New Phytol 69:217–217CrossRefGoogle Scholar
  219. Steinbachova-Vojtıskova L, Tylovaa E, Soukupa A, Novickaa H, Votrubovaa O, Lipavskaa H, Cızkovab H (2006) Influence of nutrient supply on growth, carbohydrate,and nitrogen metabolic relations in Typha angustifolia. Environ Exp Bot 57:246–257CrossRefGoogle Scholar
  220. Summers JE, Jackson MB (1998) Light- and dark-grown Potamogeton pectinatus, an aquatic macrophyte, make no ethylene (ethene) but retain responsiveness to the gas. Aust J Plant Physiol 25:599–608CrossRefGoogle Scholar
  221. Tabita FR, Satagopan S, Hanson TE, Kreel NE, Scott SS (2008) Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J Exp Bot 59:1515–1524CrossRefGoogle Scholar
  222. Talling JF (1985) Inorganic carbon reserves of natural waters and ecophysiological consequences of their photosynthetic depletion: microalgae. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. American Society of Plant Physiologists, Rockville, pp 403–435Google Scholar
  223. Thiébaut G (2008) Phosphorus and aquatic plants. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht, pp 31–49CrossRefGoogle Scholar
  224. Thoning KW, Tans PP, Komhyr WD (1989) Atmospheric carbon dioxide at Mauna Loa observatory. 2. Analysis of the NOAA GMCC data, 1974–1985. J Geophys Res Atmos 94:8549–8565CrossRefGoogle Scholar
  225. Touchette BW, Burkholder JM (2000) Overview of the physiological ecology of carbon metabolism in seagrasses. J Exp Mar Biol Ecol 250:169–205PubMedCrossRefGoogle Scholar
  226. Touchette BW (2007) Seagrass-salinity interactions: physiological mechanisms used by submersed marine angiosperms for a life at sea. J Exp Mar Biol Ecol 350:194–215CrossRefGoogle Scholar
  227. Vadstrup M, Madsen TV (1995) Growth limitation of submerged aquatic macrophytes by inorganic carbon. Freshw Biol 34:411–419CrossRefGoogle Scholar
  228. Van der Hage JCH (1996) Why are there no insects and so few higher plants, in the sea? New thoughts on an old problem. Funct Ecol 10:546–547Google Scholar
  229. van der Heijden LH, Kamenos NA (2015) Reviews and syntheses: calculating the global contribution of coralline algae to total carbon burial. Biogeosciences 12:6429–6441CrossRefGoogle Scholar
  230. van Donk E, van de Bund WJ (2002) Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72:261–274CrossRefGoogle Scholar
  231. Van Hoeck A, Horemans N, Monsieurs P, Cao HX, Vandenhove H, Blust R (2015) The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications. Biotechnol Biofuels 8:188PubMedPubMedCentralCrossRefGoogle Scholar
  232. Verberk W, Bilton DT, Calosi P, Spicer JI (2011) Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology 92:1565–1572PubMedCrossRefPubMedCentralGoogle Scholar
  233. Verboven P, Pedersen O, Ho QT, Nicolai BM, Colmer TD (2014) The mechanism of improved aeration due to gas films on leaves of submerged rice. Plant Cell Environ 37:2433–2452PubMedPubMedCentralGoogle Scholar
  234. Vile D, Garnier E, Shipley B, Laurent G, Navas ML, Roumet C et al (2005) Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann Bot 96:1129–1136PubMedPubMedCentralCrossRefGoogle Scholar
  235. Voesenek L, Bailey-Serres J (2015) Flood adaptive traits and processes: an overview. New Phytol 206:57–73PubMedCrossRefPubMedCentralGoogle Scholar
  236. Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE (2001) Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414:543–546CrossRefGoogle Scholar
  237. Voznesenskaya EV, Franceschi VR, Kiirats O, Artyusheva EG, Freitag H, Edwards GE (2002) Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J 31:649–662CrossRefGoogle Scholar
  238. Vu JCV, Allen LH, Bowes G (1984) Dark/light modulation of ribulose bisphosphate carboxylase activity in plants from different photosynthetic categories. Plant Physiol 76:843–845PubMedPubMedCentralCrossRefGoogle Scholar
  239. Wang W, Haberer G, Gundlach H, Glaesser C, Nussbaumer T, Luo MC et al (2014) The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun 5:3311PubMedPubMedCentralCrossRefGoogle Scholar
  240. Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S,. .. Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci U S A 106:12377--12,381.PubMedPubMedCentralCrossRefGoogle Scholar
  241. Webb DR, Rattray MR, Brown JMA (1988) A preliminary survey for crassulacean acid metabolism (CAM) in submerged aquatic macrophytes in New Zealand. N Z J Mar Freshw Res 22:231–235CrossRefGoogle Scholar
  242. Weise SE, van Wijk KJ, Sharkey TD (2011) The role of transitory starch in C3, CAM, and C4 metabolism and opportunities for engineering leaf starch accumulation. J Exp Bot 62:3109–3118PubMedCrossRefGoogle Scholar
  243. Wells CL, Pigliucci M (2000) Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants. Perspect Plant Ecol Evol Syst 3:1–18CrossRefGoogle Scholar
  244. Westlake DF (1975) Primary production of freshwater macrophytes. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Cambridge University Press, Cambridge, pp 189–206Google Scholar
  245. White A, Reiskind JB, Bowes G (1996) Dissolved inorganic carbon influences the photosynthetic responses of Hydrilla to photoinhibitory conditions. Aquat Bot 53:3–13CrossRefGoogle Scholar
  246. Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N et al (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci U S A 111:E4859–E4868PubMedPubMedCentralCrossRefGoogle Scholar
  247. Wiegleb G (1991) Die lebens und wuchsformen der makrophytischen wasserpflanzen und deren beziehungen zu ökologie, verbreitung und vergesellschaftung der arten. Tuexenia 11:135–148Google Scholar
  248. Wigand C, Stevenson JC, Cornwell JC (1997) Effects of different submersed macrophytes on sediment biogeochemistry. Aquat Bot 56:233–244CrossRefGoogle Scholar
  249. Williams K, Percival F, Merino J, Mooney HA (1987) Estimation of tissue construction costs from heat of combustion and organic nitrogen content. Plant Cell Environ 10:725–734Google Scholar
  250. Winter K, Holtum JAM, Smith JAC (2015) Crassulacean acid metabolism: a continuous or discrete trait. New Phytol 208:73–78PubMedCrossRefGoogle Scholar
  251. Wium-Andersen S (1971) Photosynthetic uptake of free CO2 by roots of Lobelia dortmanna. Physiol Plant 25:245–248CrossRefGoogle Scholar
  252. Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S,. .. Wilf P (2017) Global climatic drivers of leaf size. Science 357:917--921.PubMedCrossRefGoogle Scholar
  253. Yang T, Liu X (2015) Comparing photosynthetic characteristics of Isoetes sinensis Palmer under submerged and terrestrial conditions. Sci Rep 5:17783PubMedPubMedCentralCrossRefGoogle Scholar
  254. Yin L, Li W, Madsen TV, Maberly SC, Bowes G (2017) Photosynthetic inorganic carbon acquisition in 30 freshwater macrophytes. Aquat Bot 140:48–54CrossRefGoogle Scholar
  255. Zeeman SC, Smith SM, Smith AM (2004) The breakdown of starch in leaves. New Phytol 163:247–261CrossRefGoogle Scholar
  256. Zhang Y, Yin L, Jiang H-S, Li W, Gontero B, Maberly SC (2014) Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae). Photosynth Res 121:285–297CrossRefGoogle Scholar
  257. Ziegler JP, Solomon CT, Finney BP, Gregory-Eaves I (2015) Macrophyte biomass predicts food chain length in shallow lakes. Ecosphere 6:1–16CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Stephen Christopher Maberly
    • 1
    Email author
  • Brigitte Gontero
    • 2
  1. 1.Lake Ecosystems GroupCentre for Ecology & Hydrology, Lancaster Environment CentreLancasterUK
  2. 2.Enzymology of Supramolecular SystemsAix Marseille Univ, CNRS, BIPMarseilleFrance

Personalised recommendations