The Origin of the Ionized Linker: Geochemical Predestination for Phosphate?

  • Matthew A. PasekEmail author
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 35)


A major event in the origin of life on the earth must have been the formation of self-replicating polymers [e.g., Gilbert (Nature 319(6055):618, 1986)]. It is likely that any robust self-replicating polymer would have needed an ionized linker to slow hydrolysis and prevent diffusion. In modern life, the ionized linker is phosphate. In this chapter, I consider other alternatives to phosphate as linkers prior to the evolution of modern RNA/DNA. From a chemical and geological perspective phosphate is suggested to be the most likely molecule capable of performing the key activities of an ionized linker within a nucleic acid.


  1. Achbergerová L, Nahálka J (2011) Polyphosphate-an ancient energy source and active metabolic regulator. Microb Cell Factories 10(1):63CrossRefGoogle Scholar
  2. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53(1):197–214CrossRefGoogle Scholar
  3. Bean HD, Anet FA, Gould IR, Hud NV (2006) Glyoxylate as a backbone linkage for a prebiotic ancestor of RNA. Orig Life Evol Biosph 36(1):39–63CrossRefPubMedGoogle Scholar
  4. Benner SA (2011) Comment on “A bacterium that can grow by using arsenic instead of phosphorus”. Science 332:1149CrossRefPubMedGoogle Scholar
  5. Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Genet 6(7):533–543CrossRefPubMedGoogle Scholar
  6. Benner SA, Kim HJ, Carrigan MA (2012) Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc Chem Res 45(12):2025–2034CrossRefPubMedGoogle Scholar
  7. Blackmond DG (2010) The origin of biological homochirality. Cold Spring Harb Perspect Biol 2(5):a002147CrossRefPubMedPubMedCentralGoogle Scholar
  8. Borden J, Crans DC, Florián J (2006) Transition state analogues for nucleotidyl transfer reactions: structure and stability of pentavalent vanadate and phosphate ester dianions. J Phys Chem B 110(30):14988–14999CrossRefPubMedGoogle Scholar
  9. Bornscheuer UT, Kazlauskas RJ (2004) Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways. Angew Chem Int Ed 43(45):6032–6040CrossRefGoogle Scholar
  10. Bryant DE, Marriott KE, Macgregor SA, Kilner C, Pasek MA, Kee TP (2010) On the prebiotic potential of reduced oxidation state phosphorus: the H-phosphinate–pyruvate system. Chem Commun 46(21):3726–3728CrossRefGoogle Scholar
  11. Burcar B, Pasek M, Gull M, Cafferty BJ, Velasco F, Hud NV, Menor-Salván C (2016) Darwin’s warm little pond: a one-pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a urea-based solvent. Angew Chem Int Ed 55(42):13249–13253CrossRefGoogle Scholar
  12. Cafferty BJ, Fialho DM, Khanam J, Krishnamurthy R, Hud NV (2016a) Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nat Commun 7Google Scholar
  13. Cafferty BJ, Musetti C, Kim K, Horowitz ED, Krishnamurthy R, Hud NV (2016b) Small molecule-mediated duplex formation of nucleic acids with ‘incompatible’backbones. Chem Commun 52(31):5436–5439CrossRefGoogle Scholar
  14. Callahan MP, Smith KE, Cleaves HJ, Ruzicka J, Stern JC, Glavin DP et al (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci 108(34):13995–13998CrossRefPubMedGoogle Scholar
  15. Cech TR, Bass BL (1986) Biological catalysis by RNA. Annu Rev Biochem 55(1):599–629CrossRefPubMedGoogle Scholar
  16. Chen S, Wang L, Deng Z (2010) Twenty years hunting for sulfur in DNA. Protein Cell 1(1):14–21CrossRefPubMedPubMedCentralGoogle Scholar
  17. De Graaf RM, Schwartz AW (2005) Thermal synthesis of nucleoside H-phosphonates under mild conditions. Orig Life Evol Biosph 35(1):1–10CrossRefPubMedGoogle Scholar
  18. De Graaf RM, Visscher J, Schwartz AW (1998) Prebiotic chemistry of phosphonic acids: products derived from phosphonoacetaldehyde in the presence of formaldehyde. Orig Life Evol Biosph 28(3):271–282Google Scholar
  19. Elias M, Wellner A, Goldin-Azulay K, Chabriere E, Vorholt JA, Erb TJ, Tawfik DS (2012) The molecular basis of phosphate discrimination in arsenate-rich environments. Nature 491(7422):134–137CrossRefPubMedGoogle Scholar
  20. Erb TJ, Kiefer P, Hattendorf B, Günther D, Vorholt JA (2012) GFAJ-1 is an arsenate-resistant, phosphate-dependent organism. Science 337(6093):467–470CrossRefPubMedGoogle Scholar
  21. Fekry MI, Tipton PA, Gates KS (2011) Kinetic consequences of replacing the internucleotide phosphorus atoms in DNA with arsenic. ACS Chem Biol 6(2):127–130CrossRefPubMedGoogle Scholar
  22. Fox SW (1969) Self-ordered polymers and propagative cell-like systems. Naturwissenschaften 56(1):1–9CrossRefPubMedGoogle Scholar
  23. Gilbert W (1986) Origin of life: The RNA world. Nature 319(6055)Google Scholar
  24. Goldhaber MB, Orr WL (1995) Kinetic controls on thermochemical sulfate reduction as a source of sedimentary H2S. ACS Symp Ser 612:412–425CrossRefGoogle Scholar
  25. Gulick A (1955) Phosphorus as a factor in the origin of life. Am Sci 43(3):479–489Google Scholar
  26. Gull M, Mojica MA, Fernández FM, Gaul DA, Orlando TM, Liotta CL, Pasek MA (2015) Nucleoside phosphorylation by the mineral schreibersite. Sci Rep 5:17198–17198. Scholar
  27. Guthrie JP (1978) Hydrolysis of esters of oxy acids: pKa values for strong acids; Brønsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20 pK units. Can J Chem 56(17):2342–2354CrossRefGoogle Scholar
  28. Hud NV, Cafferty BJ, Krishnamurthy R, Williams LD (2013) The origin of RNA and “my grandfather’s axe”. Chem Biol 20(4):466–474CrossRefPubMedGoogle Scholar
  29. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133(1):1–16CrossRefPubMedGoogle Scholar
  30. Kamerlin SC, Sharma PK, Prasad RB, Warshel A (2013) Why nature really chose phosphate. Q Rev Biophys 46(1):1CrossRefPubMedGoogle Scholar
  31. Klemperer WG, Marquart TA, Yaghi OM (1992) New directions in polyvanadate chemistry: from cages and clusters to baskets, belts, bowls, and barrels. Angew Chem Int Ed Engl 31(1):49–51CrossRefGoogle Scholar
  32. Lopez V, Stevens T, Lindquist RN (1976) Vanadium ion inhibition of alkaline phosphatase-catalyzed phosphate ester hydrolysis. Arch Biochem Biophys 175(1):31–38CrossRefPubMedGoogle Scholar
  33. Martin AR, Barvik I, Luvino D, Smietana M, Vasseur JJ (2011) Dynamic and programmable DNA-templated boronic ester formation. Angew Chem Int Ed 50(18):4193–4196CrossRefGoogle Scholar
  34. Martin AR, Mohanan K, Luvino D, Floquet N, Baraguey C, Smietana M, Vasseur JJ (2009) Expanding the borononucleotide family: synthesis of borono-analogues of dCMP, dGMP and dAMP. Org Biomol Chem 7(21):4369–4377CrossRefPubMedGoogle Scholar
  35. Martin AR, Vasseur JJ, Smietana M (2013) Boron and nucleic acid chemistries: merging the best of both worlds. Chem Soc Rev 42(13):5684–5713CrossRefPubMedGoogle Scholar
  36. Menor-Salván C, Ruiz-Bermejo D, Guzmán MI, Osuna-Esteban S, Veintemillas-Verdaguer S (2009) Synthesis of pyrimidines and triazines in ice: implications for the prebiotic chemistry of nucleobases. Chem Eur J 15(17):4411–4418CrossRefPubMedGoogle Scholar
  37. Merck Index (1996) 12th ed. Merck, Whitehouse Station, NJ, p 152Google Scholar
  38. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046):528–529CrossRefGoogle Scholar
  39. Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130(3370):245–251CrossRefPubMedGoogle Scholar
  40. Mitchell MC, Taylor RJ, Kee TP (1998) On the hydrolysis of dimethyl-H-phosphonate. An 18O-labelling and 31P-NMR study. Polyhedron 17(4):433–442CrossRefGoogle Scholar
  41. Mohammed FS, Chen K, Mojica M, Conley M, Napoline JW, Butch C, Pollet P, Krishnamurthy R, Liotta CL (2017) A plausible prebiotic origin of glyoxylate: nonenzymatic transamination reactions of glycine with formaldehyde. Synlett 28(01):93–97Google Scholar
  42. Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26(3):311–325CrossRefPubMedGoogle Scholar
  43. Nelson KE, Levy M, Miller SL (2000) Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc Natl Acad Sci 97(8):3868–3871CrossRefPubMedGoogle Scholar
  44. Niemi R, Vepsäläinen J, Taipale H, Järvinen T (1999) Bisphosphonate prodrugs: synthesis and in vitro evaluation of novel acyloxyalkyl esters of clodronic acid. J Med Chem 42(24):5053–5058CrossRefPubMedGoogle Scholar
  45. O'Neill MA, Warrenfeltz D, Kates K, Pellerin P, Doco T, Darvill AG, Albersheim P (1996) Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester in vitro conditions for the formation and hydrolysis of the dimer. J Biol Chem 271(37):22923–22930CrossRefPubMedGoogle Scholar
  46. Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39(2):99–123CrossRefGoogle Scholar
  47. Ossenkamp GC, Kemmitt T, Johnston JH (2001) New approaches to surface-alkoxylated silica with increased hydrolytic stability. Chem Mater 13(11):3975–3980CrossRefGoogle Scholar
  48. Pabis A, Duarte F, Kamerlin SC (2016) Promiscuity in the enzymatic catalysis of phosphate and sulfate transfer. Biochemistry 55(22):3061–3081CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pasek MA (2017) Schreibersite on the early earth: scenarios for prebiotic phosphorylation. Geosci Front 8:329–335CrossRefGoogle Scholar
  50. Pasek M, Block K (2009) Lightning-induced reduction of phosphorus oxidation state. Nat Geosci 2(8):553–556CrossRefGoogle Scholar
  51. Pasek MA, Dworkin JP, Lauretta DS (2007) A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim Cosmochim Acta 71(7):1721–1736CrossRefGoogle Scholar
  52. Pasek MA, Harnmeijer JP, Buick R, Gull M, Atlas Z (2013) Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc Natl Acad Sci 110(25):10089–10094CrossRefPubMedGoogle Scholar
  53. Pasek M, Herschy B, Kee TP (2015) Phosphorus: a case for mineral-organic reactions in prebiotic chemistry. Orig Life Evol Biosph 45(1–2):207–218CrossRefPubMedGoogle Scholar
  54. Pasek MA, Kee TP, Bryant DE, Pavlov AA, Lunine JI (2008) Production of potentially prebiotic condensed phosphates by phosphorus redox chemistry. Angew Chem Int Ed 47(41):7918–7920CrossRefGoogle Scholar
  55. Pasek MA, Lauretta DS (2005) Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology 5(4):515–535CrossRefPubMedGoogle Scholar
  56. Pawlowska R, Korczynski D, Nawrot B, Stec WJ, Chworos A (2016) The α-thio and/or β-γ-hypophosphate analogs of ATP as cofactors of T4 DNA ligase. Bioorg Chem 67:110–115CrossRefPubMedGoogle Scholar
  57. Peyser JR, Ferris JP (2001) The rates of hydrolysis of thymidyl-3′, 5′-thymidine-H-phosphonate: the possible role of nucleic acids linked by diesters of phosphorous acid in the origins of life. Orig Life Evol Biosph 31(4):363–380CrossRefPubMedGoogle Scholar
  58. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459(7244):239–242CrossRefPubMedGoogle Scholar
  59. Prusiner SB (1991) Molecular biology of prion diseases. Science 252(5012):1515–1523CrossRefPubMedGoogle Scholar
  60. Reaves ML, Sinha S, Rabinowitz JD, Kruglyak L, Redfield RJ (2012) Absence of detectable arsenate in DNA from arsenate-grown GFAJ-1 cells. Science 337(6093):470–473CrossRefPubMedGoogle Scholar
  61. Ricardo A, Carrigan MA, Olcott AN, Benner SA (2004) Borate minerals stabilize ribose. Science 303(5655):196–196CrossRefPubMedGoogle Scholar
  62. Rochette EA, Bostick BC, Li G, Fendorf S (2000) Kinetics of arsenate reduction by dissolved sulfide. Environ Sci Technol 34(22):4714–4720CrossRefGoogle Scholar
  63. Schoepp-Cothenet B, Nitschke W, Barge LM, Ponce A, Russell MJ, Tsapin AI (2011) Comment on “A bacterium that can grow by using arsenic instead of phosphorus”. Science 332:1149CrossRefPubMedGoogle Scholar
  64. Steinberg H, Hunter DL (1957) Preparation and rate of hydrolysis of boric acid esters. Ind Eng Chem 49(2):174–181CrossRefGoogle Scholar
  65. Sugiyama M, Hong Z, Whalen LJ, Greenberg WA, Wong CH (2006) Borate as a phosphate ester mimic in aldolase-catalyzed reactions: practical synthesis of L-fructose and L-Iminocyclitols. Adv Synth Catal 348(18):2555–2559CrossRefGoogle Scholar
  66. Takeno, N. (2005). Atlas of Eh-pH diagrams. Geological survey of Japan open file report, 419, p 102Google Scholar
  67. Tracey AS, Gresser MJ (1988) The characterization of primary, secondary, and tertiary vanadate alkyl esters by 51V nuclear magnetic resonance spectroscopy. Can J Chem 66(10):2570–2574CrossRefGoogle Scholar
  68. Tracey AS, Galeffi B, Mahjour S (1988) Vanadium (V) oxyanions. The dependence of vanadate alkyl ester formation on the pKa of the parent alcohols. Can J Chem 66(9):2294–2298CrossRefGoogle Scholar
  69. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33(2):241–265CrossRefGoogle Scholar
  70. Van Mooy BA, Rocap G, Fredricks HF, Evans CT, Devol AH (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc Natl Acad Sci 103(23):8607–8612CrossRefPubMedGoogle Scholar
  71. Wang D, Li ZJ, Ying HJ (2009) Solubility of adenosine 5′-monophosphate in different solvents from (288.15 to 330.15) K. J Chem Eng Data 55(2):992–993CrossRefGoogle Scholar
  72. Wang L, Chen S, Xu T, Taghizadeh K, Wishnok JS, Zhou X et al (2007) Phosphorothioation of DNA in bacteria by dnd genes. Nat Chem Biol 3(11):709–710CrossRefPubMedGoogle Scholar
  73. Wanty RB, Goldhaber MB (1992) Thermodynamics and kinetics of reactions involving vanadium in natural systems: accumulation of vanadium in sedimentary rocks. Geochim Cosmochim Acta 56(4):1471–1483CrossRefGoogle Scholar
  74. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738CrossRefPubMedGoogle Scholar
  75. Westheimer FH (1987) Why nature chose phosphates. Science 235(4793):1173–1178CrossRefPubMedGoogle Scholar
  76. White HB (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7(2):101–104CrossRefPubMedGoogle Scholar
  77. Williams NH, Wyman P (2001) Base catalysed phosphate diester hydrolysis. Chem Commun (14):1268–1269Google Scholar
  78. Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J et al (2011) A bacterium that can grow by using arsenic instead of phosphorus. Science 332(6034):1163–1166CrossRefPubMedGoogle Scholar
  79. Wohlgemuth R, Liese A, Streit W (2017) Biocatalytic phosphorylations of metabolites: past, present, and future. Trends Biotechnol 35(5):452–465Google Scholar
  80. Wuggenig F, Hammerschmidt F (1998) Enzymes in organic chemistry VI [1]. Enantioselective hydrolysis of 1-chloroacetoxycycloalkylmethylphosphonates with lipase AP 6 from Aspergillus niger and chemoenzymatic synthesis of chiral, nonracemic 1-aminocyclohexyl-methylphosphonic acids. Monatsh Chem Chem Mon 129(4):423–436Google Scholar
  81. Xie X, Liang J, Pu T, Xu F, Yao F, Yang Y et al (2012) Phosphorothioate DNA as an antioxidant in bacteria. Nucleic Acids Res 40(18):9115–9124CrossRefPubMedPubMedCentralGoogle Scholar
  82. Yamagata Y (1999) Prebiotic formation of ADP and ATP from AMP, calcium phosphates and cyanate in aqueous solution. Orig Life Evol Biosph 29(5):511–520CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Geosciences, University of South FloridaTampaUSA

Personalised recommendations