Advertisement

From the Dawn of Organic Chemistry to Astrobiology: Urea as a Foundational Component in the Origin of Nucleobases and Nucleotides

  • César Menor-Salván
Chapter
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 35)

Abstract

Urea is formed in significant quantities in classic prebiotic model reactions and simply by hydrolysis of cyanide. It is a very interesting molecule, with chemical properties that make it a potential precursor of nucleobases and related molecules, as well as a promoter of phosphorylation. In addition, urea’s physico-chemical properties allow it to form a range of viscous eutectic solutions by simple evaporation or freezing. Thus, urea is the basis of a potential prebiotic environment that forms “little ponds.” This chapter provides a historical perspective on the prebiotic chemistry of urea, from Wohler’s synthesis in the early nineteenth century to the most recent works.

Notes

Acknowledgements

This chapter was supported by the National Science Foundation (NSF) and the National Aeronautics and Space Administration Astrobiology Program, under the NSF Center for Chemical Evolution at Georgia Institute of Technology (CHE-1004570, CHE-1504217). I wish to acknowledge the fruitful discussions with Nicholas V. Hud and his constant and unconditional support. This chapter and the whole book has been possible thanks to my friends, colleagues, and staff at Georgia Tech, to whom I will be always indebted for their support.

References

  1. Adcock CT, Hausrath EM, Forster PM (2013) Readily available phosphate from minerals in early aqueous environments on Mars. Nat Geosci 6(10):824–827CrossRefGoogle Scholar
  2. Airapetian VS, Glocer A, Gronoff G, Hébrard E, Danchi W (2016) Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat Geosci 9(6):452–455CrossRefGoogle Scholar
  3. Albert A (1957) The transformation of purines into pteridines. Biochem J 65(1):124PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bada JL (2004) How life began on Earth: a status report. Earth Planet Sci Lett 226:1–15CrossRefGoogle Scholar
  5. Baeyer A (1864) Mittheilungen aus dem organischen Laboratorium des Gewerbeinstitutes in Berlin: Untersuchungen über die Harnsäuregruppe. Justus Liebigs Ann Chem 130(2):129–175CrossRefGoogle Scholar
  6. Becker S, Thoma I, Deutsch A, Gehrke T, Mayer P, Zipse H, Carell T (2016) A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science 352(6287):833–836PubMedCrossRefGoogle Scholar
  7. Bendich A, Getler H, Brown GB (1949) A synthesis of isotopic cytosine and a study of its metabolism in the rat. J Biol Chem 177(2):565–570PubMedPubMedCentralGoogle Scholar
  8. Bendich A, Furst SS, Brown GB (1950) On the role of 2,6-diaminopurine in the biosynthesis of nucleic acid guanine. J Biol Chem 185(1):423–433PubMedPubMedCentralGoogle Scholar
  9. Ben-Ishai D, Altman J, Bernstein Z (1977) The reactions of ureas with glyoxylic acid and methyl glyoxylate. Tetrahedron 33(10):1191–1196CrossRefGoogle Scholar
  10. Benner SA, Kim HJ, Carrigan MA (2012) Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc Chem Res 45(12):2025–2034PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bernstein MP, Dworkin JP, Sandford SA, Cooper GW, Allamandola LJ (2002) Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416(6879):401PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bredlow LA (2010) Diogenes Laertius, Vidas y Opiniones de los Filósofos Ilustres (Life and opinions of eminent philosophers). Translation to Spanish and Comments. Lucina, Zamora (Spain)Google Scholar
  13. Brooke TY, Tokunaga AT, Weaver HA, Crovisier J, Bockelée-Morvan D, Crisp D (1996) Detection of acetylene in the infrared spectrum of comet Hyakutake. Nature 383(6601):606PubMedCrossRefPubMedCentralGoogle Scholar
  14. Burcar B, Pasek M, Gull M, Cafferty BJ, Velasco F, Hud NV, Menor-Salván C (2016) Darwin’s warm little pond: a one-pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a urea-based solvent. Angew Chem Int Ed 55(42):13249–13253CrossRefGoogle Scholar
  15. Burton AS, Stern JC, Elsila JE, Glavin DP, Dworkin JP (2012) Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem Soc Rev 41(16):5459–5472PubMedCrossRefPubMedCentralGoogle Scholar
  16. Butch C, Cope ED, Pollet P, Gelbaum L, Krishnamurthy R, Liotta CL (2013) Production of tartrates by cyanide-mediated dimerization of glyoxylate: a potential abiotic pathway to the citric acid cycle. J Am Chem Soc 135(36):13440–13445PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cafferty BJ, Hud NV (2014) Abiotic synthesis of RNA in water: a common goal of prebiotic chemistry and bottom-up synthetic biology. Curr Opin Chem Biol 22:146–157PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cafferty BJ, Fialho DM, Khanam J, Krishnamurthy R, Hud NV (2016) Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nat Commun 7:11328PubMedPubMedCentralCrossRefGoogle Scholar
  19. Callahan MP, Smith KE, Cleaves HJ, Ruzicka J, Stern JC, Glavin DP et al (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci U S A 108(34):13995–13998PubMedPubMedCentralCrossRefGoogle Scholar
  20. Carracido JR (1920) Filogenia química de la molécula albuminoide. Revista de la Real Academia de Ciencias Físicas, Exactas y Naturales, vol 20Google Scholar
  21. Carter MK (1951) The story of barbituric acid. J Chem Educ 28(10):524CrossRefGoogle Scholar
  22. Cavalieri LF, Brown GB (1949) The exchange between a formamido group and formamide, studied with C13,1. J Am Chem Soc 71(6):2246–2247CrossRefGoogle Scholar
  23. Chawla M, Oliva R, Bujnicki JM, Cavallo L (2015) An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies. Nucleic Acids Res 43(14):6714–6729PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chen MC, Cafferty BJ, Mamajanov I, Gállego I, Khanam J, Krishnamurthy R, Hud NV (2013) Spontaneous prebiotic formation of a β-ribofuranoside that self-assembles with a complementary heterocycle. J Am Chem Soc 136(15):5640–5646PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cleaves HJ (2008) The prebiotic geochemistry of formaldehyde. Precambrian Res 164:111–118CrossRefGoogle Scholar
  26. Cleaves HJ, Nelson KE, Miller SL (2006) The prebiotic synthesis of pyrimidines in frozen solution. Naturwissenschaften 93(5):228–231PubMedCrossRefPubMedCentralGoogle Scholar
  27. Cleaves HJ, Scott AM, Hill FC, Leszczynski J, Sahai N, Hazen R (2012) Mineral–organic interfacial processes: potential roles in the origins of life. Chem Soc Rev 41(16):5502–5525PubMedCrossRefPubMedCentralGoogle Scholar
  28. Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379PubMedCrossRefPubMedCentralGoogle Scholar
  29. Curd P (2007) Anaxagoras of Clazomenae: fragments. Text and translation with notes and essays. University of Toronto Press, TorontoGoogle Scholar
  30. Damer B (2016) A field trip to the Archaean in search of Darwin’s warm little pond. Life 6(2):21PubMedCentralCrossRefGoogle Scholar
  31. Datta K, Johnson NP, Villani G, Marcus AH, von Hippel PH (2012) Characterization of the 6-methyl isoxanthopterin (6-MI) base analog dimer, a spectroscopic probe for monitoring guanine base conformations at specific sites in nucleic acids. Nucleic Acids Res 40(3):1191–1202PubMedCrossRefPubMedCentralGoogle Scholar
  32. Davis TL (1921) The action of ammonia water on dicyandiamide. J Am Chem Soc 43(10):2230–2233CrossRefGoogle Scholar
  33. Day A, Arnold AP, Blanch RJ, Snushall B (2001) Controlling factors in the synthesis of cucurbituril and its homologues. J Org Chem 66(24):8094–8100PubMedCrossRefPubMedCentralGoogle Scholar
  34. De Marcellus P, Bertrand M, Nuevo M, Westall F, Le Sergeant d’Hendecourt L (2011) Prebiotic significance of extraterrestrial ice photochemistry: detection of hydantoin in organic residues. Astrobiology 11(9):847–854PubMedCrossRefPubMedCentralGoogle Scholar
  35. de Marcellus P, Meinert C, Myrgorodska I, Nahon L, Buhse T, d’Hendecourt LLS, Meierhenrich UJ (2015) Aldehydes and sugars from evolved precometary ice analogs: importance of ices in astrochemical and prebiotic evolution. Proc Natl Acad Sci U S A 112(4):965–970PubMedPubMedCentralCrossRefGoogle Scholar
  36. Delidovich IV, Taran OP, Simonov AN, Matvienko LG, Parmon VN (2011) Photoinduced catalytic synthesis of biologically important metabolites from formaldehyde and ammonia under plausible “prebiotic” conditions. Adv Space Res 48(3):441–449CrossRefGoogle Scholar
  37. Des Marais DJ, Nuth JA III, Allamandola LJ, Boss AP, Farmer JD, Hoehler TM, Spormann AM (2008) The NASA astrobiology roadmap. Astrobiology 8(4):715–730PubMedCrossRefPubMedCentralGoogle Scholar
  38. Ellington A, Szostak J (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822PubMedCrossRefPubMedCentralGoogle Scholar
  39. Eschenmoser A (2007) The search for the chemistry of life’s origin. Tetrahedron 63(52):12821–12844CrossRefGoogle Scholar
  40. Fahrenbach AC, Giurgiu C, Tam CP, Li L, Hongo Y, Aono M, Szostak JW (2017) Common and potentially prebiotic origin for precursors of nucleotide synthesis and activation. J Am Chem Soc 139(26):8780–8783PubMedCrossRefPubMedCentralGoogle Scholar
  41. Fenton HJH (1882) XXXVIII.—Transformation of urea into cyanamide. J Chem Soc Trans 41:262–263CrossRefGoogle Scholar
  42. Ferris JP, Hagan WH (1984) HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis. Tetrahedron 40(7):1093–1120PubMedCrossRefPubMedCentralGoogle Scholar
  43. Ferris JP, Orgel LE (1966) An unusual photochemical rearrangement in the synthesis of adenine from hydrogen cyanide. J Am Chem Soc 88(5):1074–1074CrossRefGoogle Scholar
  44. Ferris JP, Sanchez RA, Orgel LE (1968) Studies in prebiotic synthesis of pyrimidines. J Mol Biol 33:693–704PubMedCrossRefGoogle Scholar
  45. Fialho DM, Clarke KC, Moore MK, Schuster GB, Krishnamurthy R, Hud NV (2018) Glycosylation of a model proto-RNA nucleobase with non-ribose sugars: implications for the prebiotic synthesis of nucleosides. Org Biomol Chem 16(8):1263–1271PubMedCrossRefPubMedCentralGoogle Scholar
  46. Forsythe JG, Yu SS, Mamajanov I, Grover MA, Krishnamurthy R, Fernández FM, Hud NV (2015) Ester-mediated amide bond formation driven by wet–dry cycles: a possible path to polypeptides on the prebiotic earth. Angew Chem Int Ed 54(34):9871–9875CrossRefGoogle Scholar
  47. Francis BR (2015) The hypothesis that the genetic code originated in coupled synthesis of proteins and the evolutionary predecessors of nucleic acids in primitive cells. Life 5:467–505PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gautier A (1884) Nouvelle methode de synthese de composes organiques azotes; synthese de la xanthine et de la methylxanthine. Bulletin de la Societe Chimique de France 42:141–146Google Scholar
  49. Goesmann F, Rosenbauer H, Bredehöft JH, Cabane M, Ehrenfreund P, Gautier T, McKenna-Lawlor S (2015) Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science 349(6247):aab0689PubMedCrossRefPubMedCentralGoogle Scholar
  50. Grdadolnik J, Maréchal Y (2002) Urea and urea–water solutions—an infrared study. J Mol Struct 615(1–3):177–189CrossRefGoogle Scholar
  51. Grimaux E (1879) Synthese des dérivés uriques de la série de l’alloxane. Bull Soc Chim Fr 31:146Google Scholar
  52. Grover M, He C, Hsieh M-C, Yu S-S (2015) A chemical engineering perspective on the origins of life. PRO 3(2):309–338Google Scholar
  53. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35(3):849–857PubMedCrossRefGoogle Scholar
  54. Guilbert W (1986) The RNA world. Nature 319:618CrossRefGoogle Scholar
  55. Gull M, Pasek MA (2013) Was struvite a prebiotic mineral? Life 3:321–330PubMedPubMedCentralCrossRefGoogle Scholar
  56. Handschuh GJ, Orgel LE (1973) Struvite and prebiotic phosphorylation. Science 179(4072):483–484PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hayashi Y, Katsumoto Y, Omori S, Kishii N, Yasuda A (2007) Liquid structure of the urea−water system studied by dielectric spectroscopy. J Phys Chem B 111(5):1076–1080PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hayem G (1888) Revue des Sciences Médicales en France et a l’etranger. G. Masson ed. ParisGoogle Scholar
  59. He C, Gállego I, Laughlin B, Grover MA, Hud NV (2017) A viscous solvent enables information transfer from gene-length nucleic acids in a model prebiotic replication cycle. Nat Chem 9(4):318–324PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hilbert GE, Johnson TB (1930) Researches on pyrimidines. CXVII. A method for the synthesis of nucleosides. J Am Chem Soc 52(11):4489–4494CrossRefGoogle Scholar
  61. Holm RH (2003) Electron transfer: iron–sulfur clusters. In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 8: Bio-coordination chemistry. Pergamon, Oxford, pp 61–90CrossRefGoogle Scholar
  62. Hud NV, Cafferty BJ, Krishnamurthy R, Williams LD (2013) The origin of RNA and “my grandfather’s axe”. Chem Biol 20(4):466–474PubMedCrossRefGoogle Scholar
  63. Hurst DT (1979) An introduction to the chemistry and biochemistry of pyrimidines, purines and pteridines. Wiley, New YorkGoogle Scholar
  64. Hysell M, Siegel JA, Yitzhak T (2005) Synthesis and stability of exocyclic triazine nucleosides. Org Biomol Chem 3:2946–2952PubMedCrossRefPubMedCentralGoogle Scholar
  65. Jeilani YA, Orlando TM, Pope A, Pirim C, Nguyen MT (2014) Prebiotic synthesis of triazines from urea: a theoretical study of free radical routes to melamine, ammeline, ammelide and cyanuric acid. RSC Adv 4(61):32375CrossRefGoogle Scholar
  66. Johnson TB (1914) The origin of purines in plants. J Am Chem Soc 36(2):337–345CrossRefGoogle Scholar
  67. Johnson TB, Nicolet BH (1914) Researches on pyrimidines. LXVI. The formation of pyrimidines from diethyl aminomalonate and aminomalonic nitrile. J Am Chem Soc 36(2):345–355CrossRefGoogle Scholar
  68. Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL (2008) The Miller volcanic spark discharge experiment. Science 322(5900):404PubMedCrossRefPubMedCentralGoogle Scholar
  69. Kameda Y, Sasaki M, Hino S, Amo Y, Usuki T (2006) Hydration structure around the carbonyl group of a urea molecule in concentrated aqueous solutions studied by neutron diffraction with 12C/13C isotopic substitution. Bull Chem Soc Jpn 79(9):1367–1371CrossRefGoogle Scholar
  70. Kaur S, Sharma P, Wetmore SD (2017) Structural and electronic properties of barbituric acid and melamine-containing ribonucleosides as plausible components of prebiotic RNA: implications for prebiotic self-assembly. Phys Chem Chem Phys 19(45):30762–30771PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kenner GW, Taylor CW, Todd AR (1949) 348. Experiments on the synthesis of purine nucleosides. Part XXIII. A new synthesis of adenosine. J Chem Soc (Resumed), 1620–1624Google Scholar
  72. Kim HJ, Furukawa Y, Kakegawa T, Bita A, Scorei R, Benner SA (2016) Evaporite borate-containing mineral ensembles make phosphate available and regiospecifically phosphorylate ribonucleosides: borate as a multifaceted problem solver in prebiotic chemistry. Angew Chem Int Ed 15816–15820Google Scholar
  73. Kinoshita H (1953) Synthesis of melamine from urea. Rev Phys Chem Jpn 23:1–9Google Scholar
  74. Kočandrle R, Kleisner K (2013) Evolution born of moisture: analogies and parallels between Anaximander’s ideas on origin of life and man and later pre-Darwinian and Darwinian evolutionary concepts. J Hist Biol 46(1):103–124PubMedCrossRefPubMedCentralGoogle Scholar
  75. Krishnamurthy R (2012) Role of pKa of nucleobases in the origins of chemical evolution. Acc Chem Res 45(12):2035–2044PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31(1):147–157PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kurzer F (1956) Biuret and related compounds. Chem Rev 56(1):95–197CrossRefGoogle Scholar
  78. Kusama K, Prescott DM, Fröholm LO, Cohn WE (1966) The formation and metabolic interchanges of pseudouridine in Tetrahymena pyriformis. J Biol Chem 241(17):4086–4091PubMedPubMedCentralGoogle Scholar
  79. Lazcano A (2009) Complexity, self-organization and the origin of life: the happy liaison? Orig Life Self-Organ Biol Evol 13–22Google Scholar
  80. Lehbauer J, Pfleiderer W (2001) Nucleotides, Part LXIX, Synthesis of phosphoramidite building blocks of isoxanthopterin N8-(2′-deoxy-β-d-ribonucleosides): new fluorescence markers for oligonucleotide synthesis. Helv Chim Acta 84(8):2330–2342CrossRefGoogle Scholar
  81. Li X, Chin DN, Whitesides GM (1996) Synthesis and evaluation of thioether-based tris-melamines as components of self-assembled aggregates based on the CA.M lattice. J Org Chem 61:1779–1786PubMedCrossRefPubMedCentralGoogle Scholar
  82. Löb W (1913) Über das Verhalten des Formamids unter der Wirkung der stillen Entladung Ein Beitrag zur Frage der Stickstoff-Assimilation. Eur J Inorg Chem 46(1):684–697Google Scholar
  83. Lowe CU, Rees MW, Markham RFRS (1963) Synthesis of complex organic compounds from simple precursors: formation of amino-acids, amino-acid polymers, fatty acids and purines from ammonium cyanide. Nature 199(4890):219–222PubMedCrossRefPubMedCentralGoogle Scholar
  84. Marín-Yaseli MR, Mompeán C, Ruiz-Bermejo M (2015) A prebiotic synthesis of pterins. Chem Eur J 21(39):13531–13534PubMedCrossRefPubMedCentralGoogle Scholar
  85. Marín-Yaseli MR, González-Toril E, Mompeán C, Ruiz-Bermejo M (2016) The role of aqueous aerosols in the “Glyoxylate Scenario”: an experimental approach. Chem Eur J 22(36):12785–12799PubMedCrossRefPubMedCentralGoogle Scholar
  86. Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc 362:1887–1925CrossRefGoogle Scholar
  87. Martins S, Martins SIFS, Jongen WMF (2001) A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci Technol 11:364–373CrossRefGoogle Scholar
  88. Meinert C, Myrgorodska I, De Marcellus P, Buhse T, Nahon L, Hoffmann SV, Meierhenrich UJ (2016) Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 352(6282):208–212PubMedCrossRefPubMedCentralGoogle Scholar
  89. Menor-Salván C, Marín-Yaseli MR (2012) Prebiotic chemistry in eutectic solutions at the water–ice matrix. Chem Soc Rev 41(16):5404–5415PubMedCrossRefPubMedCentralGoogle Scholar
  90. Menor-Salván C, Marín-Yaseli MR (2013) A new route for the prebiotic synthesis of nucleobases and hydantoins in water/ice solutions involving the photochemistry of acetylene. Chem Eur J 19(20):6488–6497PubMedCrossRefPubMedCentralGoogle Scholar
  91. Menor-Salván C, Ruiz-Bermejo D, Guzmán MI, Osuna-Esteban S, Veintemillas-Verdaguer S (2009) Synthesis of pyrimidines and triazines in ice: implications for the prebiotic chemistry of nucleobases. Chem Eur J 15(17):4411–4418PubMedCrossRefPubMedCentralGoogle Scholar
  92. Menor-Salván C, Fialho D, Hud NV (2017) Urea: a key prebiotic reagent in the origin of nucleic acids. In: Astrobiology science conference 2017 (AbSciCon 2017), Mesa, AZ, USAGoogle Scholar
  93. Menor-Salván C, Fialho D, Hud NV (2018) Prebiotic origin of nucleobases, pterins and purine nucleosides in urea and hydantoin rich scenario. Implication of the Traube synthesis. Chem Eur JGoogle Scholar
  94. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046):528–529PubMedCrossRefPubMedCentralGoogle Scholar
  95. Miller SL (1957) The formation of organic compounds on the primitive Earth. Ann N Y Acad Sci 69(2):260–275PubMedCrossRefPubMedCentralGoogle Scholar
  96. Mitchell HK, Nyc JF (1947) Intermediates in the synthesis of orotic acid from oxalacetic ester and urea. J Am Chem Soc 69(3):674–677PubMedCrossRefPubMedCentralGoogle Scholar
  97. Nelson KE, Robertson MP, Levy M, Miller SL (2001) Concentration by evaporation and the prebiotic synthesis of cytosine. Orig Life Evol Biosph 31(3):221–229PubMedCrossRefPubMedCentralGoogle Scholar
  98. Noller HF, Hoffart V, Zimniak L (1992) Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256:1416–1419PubMedCrossRefPubMedCentralGoogle Scholar
  99. Novotný O, Cejpek K, Velíšek J (2008) Formation of carboxylic acids during degradation of monosaccharides. Czech J Food Sci 26(2):117–131CrossRefGoogle Scholar
  100. Nuevo M, Bredehöft JH, Meierhenrich UJ, d'Hendecourt L, Thiemann WH (2010) Urea, glycolic acid, and glycerol in an organic residue produced by ultraviolet irradiation of interstellar/pre-cometary ice analogs. Astrobiology 20:245–256CrossRefGoogle Scholar
  101. Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393PubMedCrossRefPubMedCentralGoogle Scholar
  102. Orgel LE (2004a) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39(2):99–123PubMedCrossRefPubMedCentralGoogle Scholar
  103. Orgel LE (2004b) Prebiotic adenine revisited: eutectics and photochemistry. Orig Life Evol Biosph 34(4):361–369PubMedCrossRefPubMedCentralGoogle Scholar
  104. Oró J (1960) Synthesis of adenine from ammonium cyanide. Biochem Biophys Res Commun 2(6):407–412CrossRefGoogle Scholar
  105. Oró J, Kimball AP (1961) Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. Arch Biochem Biophys 94(2):217–227PubMedCrossRefPubMedCentralGoogle Scholar
  106. Oró J, Kimball AP (1962) Synthesis of purines under possible primitive earth conditions: II. Purine intermediates from hydrogen cyanide. Arch Biochem Biophys 96(2):293–313PubMedCrossRefPubMedCentralGoogle Scholar
  107. Parnica J, Antalik M (2014) Urea and guanidine salts as novel components for deep eutectic solvents. J Mol Liq 197:23–26.  https://doi.org/10.1016/j.molliq.2014.04.016CrossRefGoogle Scholar
  108. Pascal R, Taillades J, Commeyras A (1980) Systèmes de strecker et apparentes—XII: Catalyse par les aldehydes de l’hydratation intramoleculaire des α-aminonitriles. Tetrahedron 36(20–21):2999–3008CrossRefGoogle Scholar
  109. Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD (2015) Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat Chem 7(4):301–307PubMedPubMedCentralCrossRefGoogle Scholar
  110. Peretó J, Bada JL, Lazcano A (2009) Charles Darwin and the origin of life. Orig Life Evol Biosph 39(5):395–406PubMedPubMedCentralCrossRefGoogle Scholar
  111. Perri MJ, Seitzinger S, Turpin BJ (2009) Secondary organic aerosol production from aqueous photooxidation of glycolaldehyde: laboratory experiments. Atmos Environ 43(8):1487–1497CrossRefGoogle Scholar
  112. Pfleiderer W (1964) Recent developments in the chemistry of pteridines. Angew Chem Int Ed 3(2):114–132CrossRefGoogle Scholar
  113. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459(7244):239–242PubMedCrossRefGoogle Scholar
  114. Powrie WD, Wu CH, Molund VP (1986) Browning reaction systems as sources of mutagens and antimutagens. Environ Health Perspect 67:47PubMedPubMedCentralCrossRefGoogle Scholar
  115. Ramberg PJ (2000) The death of vitalism and the birth of organic chemistry: Wohler’s urea synthesis and the disciplinary identity of organic chemistry. Ambix 47(3):170–195PubMedCrossRefPubMedCentralGoogle Scholar
  116. Rembold H, Gyure WL (1972) Biochemistry of the pteridines. Angew Chem Int Ed 11(12):1061–1072CrossRefGoogle Scholar
  117. Ruiz-Bermejo M, Menor-Salván C, Osuna-Esteban S, Veintemillas-Verdaguer S (2006) Prebiotic microreactors: a synthesis of purines and dihydroxy compounds in aqueous aerosol. Orig Life Evol Biosph 37:123–142PubMedCrossRefPubMedCentralGoogle Scholar
  118. Ruiz-Bermejo M, Menor-Salván C, Osuna-Esteban S, Veintemillas-Verdaguer S (2007) Prebiotic microreactors: a synthesis of purines and dihydroxy compounds in aqueous aerosol. Orig Life Evol Biosph 37(2):123–142PubMedCrossRefGoogle Scholar
  119. Ruiz-Bermejo M, Menor-Salván C, de la Fuente JL, Mateo-Martí E, Osuna-Esteban S, Martín-Gago JÁ, Veintemillas-Verdaguer S (2009a) CH4/N2/H2-spark hydrophobic tholins: a systematic approach to the characterisation of tholins. Part II. Icarus 204(2):672–680CrossRefGoogle Scholar
  120. Ruiz-Bermejo M, Rogero C, Menor-Salván C, Osuna-Esteban S, Angel Martin-Gago J, Veintemillas-Verdaguer S (2009b) Thermal wet decomposition of Prussian Blue: implications for prebiotic chemistry. Chem Biodivers 6:1309–1322PubMedCrossRefPubMedCentralGoogle Scholar
  121. Russell MJ, Martin W (2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29:358–363PubMedCrossRefGoogle Scholar
  122. Saladino R, Crestini C, Ciciriello F, Pino S, Costanzo G, Di Mauro E (2009) From formamide to RNA: the roles of formamide and water in the evolution of chemical information. Res Microbiol 160(7):441–448PubMedCrossRefPubMedCentralGoogle Scholar
  123. Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E (2012) From the one-carbon amide formamide to RNA all the steps are prebiotically possible. Biochimie 94(7):1451–1456PubMedCrossRefPubMedCentralGoogle Scholar
  124. Sanchez RA, Orgel LE (1970) Studies in prebiotic synthesis: V. Synthesis and photoanomerization of pyrimidine nucleosides. J Mol Biol 47(3):531–543PubMedCrossRefGoogle Scholar
  125. Sarker PK, Takahashi JI, Obayashi Y, Kaneko T, Kobayashi K (2013) Photo-alteration of hydantoins against UV light and its relevance to prebiotic chemistry. Adv Space Res 51(12):2235–2240CrossRefGoogle Scholar
  126. Schmidt G (1950) Nucleic acids, purines, and pyrimidines. Annu Rev Biochem 19(1):149–186PubMedCrossRefPubMedCentralGoogle Scholar
  127. Schwartz AW (2006) Phosphorus in prebiotic chemistry. Philos Trans R Soc Lond Ser B Biol Sci 361(1474):1743–1749; discussion 1749Google Scholar
  128. Shaw E (1950) A new synthesis of the purines adenine, hypoxanthine, xanthine and isoguanine. J Biol Chem 185:439–447PubMedPubMedCentralGoogle Scholar
  129. Smith EL, Abbott AP, Ryder KS (2014) Deep Eutectic Solvents (DESs) and their applications. Chem Rev 114(21):11060–11082PubMedCrossRefPubMedCentralGoogle Scholar
  130. Smolin EM, Rapoport L (1959) s-Triazines and derivatives. In: Weissberger A (ed) The chemistry of heterocyclic compounds. A series of monographs. Interscience, New YorkCrossRefGoogle Scholar
  131. Soper AK, Castner EW Jr, Luzar A (2003) Impact of urea on water structure: a clue to its properties as a denaturant? Biophys Chem 105(2–3):649–666PubMedCrossRefPubMedCentralGoogle Scholar
  132. Stokes RH (1965) Tracer diffusion in binary solutions subject to a dimerization equilibrium. J Phys Chem 69(11):4012–4017CrossRefGoogle Scholar
  133. ten Cate MGJ, Omerović M, Oshovsky GV, Crego-Calama M, Rei houdt DN (2005) Self-assembly and stability of double rosette nanostructures with biological functionalities. Org Biomol Chem 3(20):3727–3733PubMedCrossRefPubMedCentralGoogle Scholar
  134. Tolleson W, Diachenko G, Heller D (2009) Background paper on the chemistry of melamine alone and in combination with related compounds. World Health Organization, GenevaGoogle Scholar
  135. Traube W (1900) Ueber eine neue Synthese des Guanins und Xanthins. Ber Dtsch Chem Ges 33(1):1371–1383CrossRefGoogle Scholar
  136. Traube W (1904) Der aufbau der xanthinbasen aus der cyanessigsäure. Synthese des hypoxanthins und adenins. Eur J Org Chem 331(1):64–88Google Scholar
  137. Ts’o POP, Melvin IS, Olson AC (1963) Interaction and association of bases and nucleosides in aqueous solutions. J Am Chem Soc 85:1289–1296CrossRefGoogle Scholar
  138. Tschesche R, Hess B, Ziegler I, Machleidt H (1962) Über pteridine, XVII. Trennung von synthetischem Biopterin und Isobiopterin. Eur J Org Chem 658(1):193–201Google Scholar
  139. Tsipis CA, Karipidis PA (2003) Mechanism of a chemical classic: quantum chemical investigation of the autocatalyzed reaction of the serendipitous Wöhler synthesis of urea. J Am Chem Soc 125:2307–2318PubMedCrossRefPubMedCentralGoogle Scholar
  140. Turtle EP, Barnes JW, Trainer MG, Lorenz RD, Hibbard KE, Adams DS, Freissinet C (2018, March) Dragonfly: in situ exploration of Titan’s organic chemistry and habitability. In: Lunar and planetary science conference, vol 49Google Scholar
  141. Viqueira FD (2010) El evolucionismo de Rodríguez Carracido. Nuevas consideraciones. Anales Real Academia Nacional de Farmacia 76(4):479–491Google Scholar
  142. Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484PubMedPubMedCentralGoogle Scholar
  143. Wagner AJ, Blackmond DG (2016) The future of prebiotic chemistry. ACS Cent Sci 2(11):775–777.  https://doi.org/10.1021/acscentsci.6b00336CrossRefPubMedPubMedCentralGoogle Scholar
  144. Ware E (1950) The chemistry of the hydantoins. Chem Rev 46(3):403–470PubMedCrossRefPubMedCentralGoogle Scholar
  145. Weber AL (2001) The sugar model: catalysis by amines and amino acid products. Orig Life Evol Biosph 31(1–2):71–86PubMedCrossRefPubMedCentralGoogle Scholar
  146. Woese CR (1967) The genetic code: the molecular basis for genetic expression. Harper and Row, New YorkGoogle Scholar
  147. Wöhler F (1828) Ueber künstliche bildung des harnstoffs. Ann Phys 88(2):253–256CrossRefGoogle Scholar
  148. Yamagata Y, Sasaki K, Takaoka O, Sano S, Inomata K, Kanemitsu K, Matsumoto I (1990) Prebiotic synthesis of orotic acid parallel to the biosynthetic pathway. Orig Life Evol Biosph 20(5):389–399PubMedCrossRefPubMedCentralGoogle Scholar
  149. Zaia D a M, Zaia CTBV, De Santana H (2008) Which amino acids should be used in prebiotic chemistry studies? Orig Life Evol Biosph 38(6):469–488PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.NSF-NASA Center for Chemical Evolution, School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Systems BiologyUniversidad de AlcalaMadridSpain

Personalised recommendations