Advertisement

Nucleobases on the Primitive Earth: Their Sources and Stabilities

  • H. James CleavesII
Chapter
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 35)

Abstract

Nucleobases are nitrogen heterocycles that are key structural components of biological nucleic acids. Some theories for the origins of life suggest a role for environmentally supplied organic compounds, including nucleobases, as part of a primordial RNA or pre-RNA world. Over the last 65 years, many potentially prebiotic synthetic mechanisms have been experimentally demonstrated for nucleobases, and their presence in extraterrestrial materials has been extensively verified, suggesting some of these are valid explanations for how the environment produces them. However, the abundance of nucleobases in primitive environments would depend on the balance of the rates of their environmental synthesis and decomposition. The literature regarding chemical aspects of these questions is briefly reviewed here.

Notes

Acknowledgments

This work was partially supported by a JSPS KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas “Hadean Bioscience,” grant number JP26106003. This project was also supported by the ELSI Origins Network (EON), which is supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

References

  1. Adam ZR, Hongo Y, Cleaves HJ, Yi R, Fahrenbach AC, Yoda I, Aono M (2018) Estimating the capacity for production of formamide by radioactive minerals on the prebiotic Earth. Sci Rep 8(1):265CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alexander CMOD, Fogel M, Yabuta H, Cody GD (2007) The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim Cosmochim Acta 71:4380–4403CrossRefGoogle Scholar
  3. Allentoft ME, Collins M, Harker D, Haile J, Oskam CL, Hale ML, Campos PF, Samaniego JA, Gilbert MTP, Willerslev E, Zhang G, Scofield RP, Holdaway RN, Bunce M (2012) The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc R Soc B 279(1748):4724–4733.  https://doi.org/10.1098/rspb.2012.1745CrossRefPubMedGoogle Scholar
  4. Barks HL, Buckley R, Grieves GA, Di Mauro E, Hud NV, Orlando TM (2010) Guanine, adenine, and hypoxanthine production in UV-irradiated formamide solutions: relaxation of the requirements for prebiotic purine nucleobase formation. Chembiochem 11:1240–1243CrossRefPubMedGoogle Scholar
  5. Baross J, Hoffman S (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig Life Evol Biosph 15:327–345CrossRefGoogle Scholar
  6. Benner SA, Ellington AD (1991) RNA world. Science 252:1232CrossRefPubMedGoogle Scholar
  7. Bertinchamps AJ, Ahnström G, Hüttermann J, Cadet J, Köhnlein W, Coquerelle T, Teoule R, Cramp WA, Ehrenberg A, Elliott JP (2011) Effects of ionizing radiation on DNA: physical, chemical and biological aspects. Springer, BerlinGoogle Scholar
  8. Boldissar S, de Vries MS (2018) How nature covers its bases. Phys Chem Chem Phys 20:9701–9716Google Scholar
  9. Borquez E, Cleaves HJ, Lazcano A, Miller SL (2005) An investigation of prebiotic purine synthesis from the hydrolysis of HCN polymers. Orig Life Evol Biosph 35:79–90CrossRefPubMedGoogle Scholar
  10. Bredereck H, Effenberger F, Rainer G (1961) Eine neue einfache Purin-Synthese. Angew Chem 73:63–63CrossRefGoogle Scholar
  11. Callahan MP, Smith KE, Cleaves HJ, Ruzicka J, Stern JC, Glavin DP, House CH, Dworkin JP (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci 108:13995–13998CrossRefPubMedGoogle Scholar
  12. Chittenden GJ, Schwartz AW (1976) Possible pathway for prebiotic uracil synthesis by photodehydrogenation. Nature 263:350–351CrossRefPubMedGoogle Scholar
  13. Choughuley AS, Subbaraman AS, Kazi ZA, Chadha MS (1977) A possible prebiotic synthesis of thymine: uracil-formaldehyde-formic acid reaction. Biosystems 9:73–80CrossRefPubMedGoogle Scholar
  14. Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132CrossRefPubMedGoogle Scholar
  15. Cleaves HJ (2012) Prebiotic chemistry: What we know, what we don’t. Evol Educ Outreach 5:342–360CrossRefGoogle Scholar
  16. Cleaves HJ, Bada J (2012) The prebiotic chemistry of alternative nucleic acids. In: Seckbach J (ed) Genesis – in the beginning. Springer, Dordrecht, pp 3–33CrossRefGoogle Scholar
  17. Cleaves HJ, Miller SL (1998) Oceanic protection of prebiotic organic compounds from UV radiation. Proc Natl Acad Sci U S A 95:7260–7263CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cody GD, Heying E, Alexander CMO, Nittler LR, Kilcoyne ALD, Sandford SA, Stroud RM (2011) Establishing a molecular relationship between chondritic and cometary organic solids. Proc Natl Acad SciGoogle Scholar
  19. Corey EJ (1988) Retrosynthetic thinking – essentials and examples. Chem Soc Rev 17:111–133.  https://doi.org/10.1039/CS9881700111CrossRefGoogle Scholar
  20. Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379CrossRefPubMedGoogle Scholar
  21. Cronin JR (1989) Origin of organic compounds in carbonaceous chondrites. Adv Space Res 9:59–64CrossRefPubMedGoogle Scholar
  22. Doane TA (2017) A survey of photogeochemistry. Geochem Trans 18:1CrossRefPubMedPubMedCentralGoogle Scholar
  23. Draganić IG, Draganić ZD, Adloff JP (1990) Radiation and radioactivity on Earth and beyond. CRC Press, Boca Raton, FLGoogle Scholar
  24. Ferris JP, Orgel LE (1965) Aminomalononitrile and 4-amino-5-cyanoimidazole in hydrogen cyanide polymerization and adenine synthesis. J Am Chem Soc 87:4976–4977CrossRefPubMedGoogle Scholar
  25. Ferris JP, Sanchez RA, Orgel LE (1968) Studies in prebiotic synthesis. 3. Synthesis of pyrimidines from cyanoacetylene and cyanate. J Mol Biol 33:693–704CrossRefPubMedGoogle Scholar
  26. Ferris JP, Joshi PC, Edelson EH, Lawless JG (1978) HCN: a plausible source of purines, pyrimidines and amino acids on the primitive earth. J Mol Evol 11:293–311CrossRefPubMedGoogle Scholar
  27. Fox SW, Harada K (1961) Synthesis of uracil under conditions of a thermal model of prebiological chemistry. Science 133:1923–1924CrossRefPubMedGoogle Scholar
  28. Gautier T, Carrasco N, Buch A, Szopa C, Sciamma-O’Brien E, Cernogora G (2011) Nitrile gas chemistry in Titan’s atmosphere. Icarus 213:625–635CrossRefGoogle Scholar
  29. Gilbert W (1986) Origin of life: The RNA world. Nature 319Google Scholar
  30. Halevy I, Bachan A (2017) The geologic history of seawater pH. Science 355(6329):1069–1071CrossRefPubMedGoogle Scholar
  31. Hayatsu R, Studier MH, Matsuoka S, Anders E (1972) Origin of organic-matter in early solar system. 6. Catalytic synthesis of nitriles, nitrogen bases and porphyrin-like pigments. Geochim Cosmochim Acta 36:555–571CrossRefGoogle Scholar
  32. Hayatsu R, Studier MH, Moore LP, Anders E (1975) Purines and triazines in murchison meteorite. Geochim Cosmochim Acta 39:471–488CrossRefGoogle Scholar
  33. Joyce GF, Schwartz AW, Miller SL, Orgel LE (1987) The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci USA 84:4398–4402CrossRefPubMedGoogle Scholar
  34. Kminek G, Bada JL (2006) The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet Sci Lett 245:1–5CrossRefGoogle Scholar
  35. Krissansen-Totton J, Arney GN, Catling DC (2018) Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proc Natl Acad Sci 115(16):201721296Google Scholar
  36. Kvenvolden K, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan IR, Moore C (1970) Evidence for extraterrestrial amino acids and hydrocarbons in Murchison meteorite. Nature 228:923–926CrossRefPubMedGoogle Scholar
  37. Kvenvolden K, Lawless JG, Ponnamperuma C (1971) Nonprotein amino acids in Murchison meteorite. Proc Natl Acad Sci U S A 68:486–490CrossRefPubMedPubMedCentralGoogle Scholar
  38. Levy M, Miller SL (1998) The stability of the RNA bases: implications for the origin of life. Proc Natl Acad Sci U S A 95:7933–7938CrossRefPubMedPubMedCentralGoogle Scholar
  39. Levy M, Miller SL, Brinton K, Bada JL (2000) Prebiotic synthesis of adenine and amino acids under Europa-like conditions. Icarus 145:609–613CrossRefPubMedGoogle Scholar
  40. Lewis CA, Crayle J, Zhou S, Swanstrom R, Wolfenden R (2016) Cytosine deamination and the precipitous decline of spontaneous mutation during Earth’s history. Proc Natl Acad Sci 113(29):8194–8199CrossRefPubMedGoogle Scholar
  41. Malyshev DA, Dhami K, Lavergne T, Chen T, Dai N, Foster JM, Correa IR, Romesberg FE (2014) A semi-synthetic organism with an expanded genetic alphabet. Nature 509:385–388CrossRefPubMedPubMedCentralGoogle Scholar
  42. Martins Z, Botta O, Fogel ML, Sephton MA, Glavin DP, Watson JS, Dworkin JP, Schwartz AW, Ehrenfreund P (2009) Extraterrestrial nucleobases in the Murchison meteorite. Orig Life Evol Biosph 39:214–214Google Scholar
  43. Mason SF (1991) Chemical evolution: origin of the elements, molecules, and living systems. Clarendon Press, OxfordGoogle Scholar
  44. Miller SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529CrossRefGoogle Scholar
  45. Miller SL (1955) Production of some organic compounds under possible primitive Earth conditions. J Am Chem Soc 77:2351–2361CrossRefGoogle Scholar
  46. Miller SL, Bada JL (1988) Submarine hot springs and the origin of life. Nature 334:609–611CrossRefPubMedGoogle Scholar
  47. Minton A, Rosenberg E (1964) The effect of temperature on the preservation of purine and pyrimidine bases. Geochim Cosmochim Acta 28(12):1953–1959CrossRefGoogle Scholar
  48. Miyakawa S, Cleaves HJ, Miller SL (2002a) The cold origin of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32:209–218CrossRefPubMedGoogle Scholar
  49. Miyakawa S, Yamanashi H, Kobayashi K, Cleaves HJ, Miller SL (2002b) Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proc Natl Acad Sci U S A 99:14628–14631CrossRefPubMedPubMedCentralGoogle Scholar
  50. Miyakawa S, Cleaves HJ, Miller SL (2002c) The cold origin of life: A. Implications based on the hydrolytic stabilities of hydrogen cyanide and formamide. Orig Life Evol Biosph 32:195–208CrossRefPubMedGoogle Scholar
  51. Morowitz HJ (1999) A theory of biochemical organization, metabolic pathways, and evolution. Complexity 4:39–53CrossRefGoogle Scholar
  52. Mumma MJ, Charnley SB (2011) The chemical composition of comets—Emerging taxonomies and natal heritage. Astron Astrophys 49:471–524CrossRefGoogle Scholar
  53. Musto H, Naya H, Zavala A, Romero H, Alvarez-Valın F, Bernardi G (2004) Correlations between genomic GC levels and optimal growth temperatures in prokaryotes. FEBS Lett 573(1–3):73–77CrossRefPubMedGoogle Scholar
  54. Nelson KE, Robertson M, Levy M, Miller SL (2001) Concentration by evaporation and the prebiotic synthesis of cytosine. Orig Life Evol Biosph 31:221–229CrossRefPubMedGoogle Scholar
  55. Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393CrossRefPubMedGoogle Scholar
  56. Oró J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 191:1193–1194CrossRefPubMedGoogle Scholar
  57. Oró J (1963) Studies in experimental organic cosmochemistry. Ann NY Acad Sci 108(2):464–481CrossRefPubMedGoogle Scholar
  58. Pearce BK, Pudritz RE, Semenov DA, Henning TK (2017) Origin of the RNA world: the fate of nucleobases in warm little ponds. Proc Natl Acad Sci, p 201710339Google Scholar
  59. Peeters Z, Botta O, Charnley SB, Ruiterkamp R, Ehrenfreund P (2003) The astrobiology of nucleobases. Astrophys J Lett 593(2):L129CrossRefGoogle Scholar
  60. Pinheiro VB, Loakes D, Holliger P (2013) Synthetic polymers and their potential as genetic materials. BioEssays 35:113–122CrossRefPubMedGoogle Scholar
  61. Pizzarello S (2012) Hydrogen cyanide in the Murchison meteorite. Astrophys J Lett 754:L27CrossRefGoogle Scholar
  62. Pizzarello S, Shock E (2010) The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. Cold Spring Harb Perspect Biol 2:a002105CrossRefPubMedPubMedCentralGoogle Scholar
  63. Powner MW, Sutherland JD (2008) Potentially prebiotic synthesis of pyrimidine beta-D-ribonucleotides by photoanomerization/hydrolysis of alpha-D-cytidine-2′-phosphate. Chembiochem 9:2386–2387CrossRefPubMedGoogle Scholar
  64. Powner MW, Sutherland JD, Szostak JW (2010) Chemoselective multicomponent one-pot assembly of purine precursors in water. J Am Chem Soc 132:16677–16688CrossRefPubMedPubMedCentralGoogle Scholar
  65. Robertson MP, Miller SL (1995a) Prebiotic synthesis of 5-substituted uracils – a bridge between the RNA world and the DNA-protein world. Science 268:702–705CrossRefPubMedGoogle Scholar
  66. Robertson MP, Miller SL (1995b) An efficient prebiotic synthesis of cytosine and uracil. Nature 375:772–774CrossRefPubMedGoogle Scholar
  67. Robertson MP, Miller SL (1995c) Prebiotic synthesis of 5-substituted uracils: a bridge between the RNA world and the DNA-protein world. Science 268:702–705CrossRefPubMedGoogle Scholar
  68. Robertson MP, Levy M, Miller SL (1996) Prebiotic synthesis of diaminopyrimidine and thiocytosine. J Mol Evol 43:543–550CrossRefPubMedGoogle Scholar
  69. Rubey WW (1951) Geologic history of sea water. Geol Soc Am Bull 62:1111–1148CrossRefGoogle Scholar
  70. Ruiz-Bermejo M, Zorzano M-P, Osuna-Esteban S (2013) Simple organics and biomonomers identified in HCN polymers: An overview. Life 3:421–448CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ruiz-Mirazo K, Briones C, de la Escosura A (2014) Prebiotic systems chemistry: new perspectives for the origins of life. Chem Rev 114(1):285–366CrossRefPubMedGoogle Scholar
  72. Saladino R, Crestini C, Costanzo G, Negri R, Di Mauro E (2001) A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: implications for the origin of life. Bioorg Med Chem 9:1249–1253CrossRefPubMedGoogle Scholar
  73. Sanchez RA, Orgel LE (1970) Studies in prebiotic synthesis. V. Synthesis and photoanomerization of pyrimidine nucleosides. J Mol Biol 47:531–543CrossRefPubMedGoogle Scholar
  74. Sanchez R, Ferris J, Orgel LE (1966a) Conditions for purine synthesis: did prebiotic synthesis occur at low temperatures? Science 153:72–73CrossRefPubMedGoogle Scholar
  75. Sanchez RA, Ferris JP, Orgel LE (1966b) Cyanoacetylene in prebiotic synthesis. Science 154:784–785CrossRefPubMedGoogle Scholar
  76. Sanchez RA, Ferris JP, Orgel LE (1967) Studies in prebiotic synthesis. II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. J Mol Biol 30:223–253PubMedGoogle Scholar
  77. Schlesinger G, Miller SL (1983a) Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. I. Amino acids. J Mol Evol 19:376–382CrossRefPubMedGoogle Scholar
  78. Schlesinger G, Miller SL (1983b) Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. II. Hydrogen cyanide, formaldehyde and ammonia. J Mol Evol 19:383–390CrossRefPubMedGoogle Scholar
  79. Schmitt-Kopplin P, Gabelica Z, Gougeon RD, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G, Hertkorn N (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci 107:2763–2768CrossRefPubMedGoogle Scholar
  80. Schneider C, Becker S, Okamura H, Crisp A, Amatov T, Stadlmeier M, Carell T (2018) Prebiotic methylations and carbamoylations generate non-canonical RNA nucleosides as molecular fossils of an early Earth. Angew ChemGoogle Scholar
  81. Schulze-Makuch D, Wagner D, Kounaves SP, Mangelsdorf K, Devine KG, de Vera JP, Schmitt-Kopplin P, Grossart HP, Parro V, Kaupenjohann M, Galy A (2018) Transitory microbial habitat in the hyperarid Atacama Desert. Proc Natl Acad Sci 115(11):2670–2675CrossRefPubMedGoogle Scholar
  82. Schwartz AW, Bakker CG (1989) Was adenine the first purine? Science 245:1102–1104CrossRefPubMedGoogle Scholar
  83. Schwartz AW, Joosten H, Voet AB (1982) Prebiotic adenine synthesis via HCN oligomerization in ice. Biosystems 15(3):191CrossRefPubMedGoogle Scholar
  84. Segré D, Ben-Eli D, Lancet D (2000) Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci U S A 97:4112–4117CrossRefPubMedPubMedCentralGoogle Scholar
  85. Shapiro R (1999) Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. Proc Natl Acad Sci U S A 96:4396–4401CrossRefPubMedPubMedCentralGoogle Scholar
  86. Stephen-Sherwood E, Oro J, Kimball AP (1971) Thymine: a possible prebiotic synthesis. Science 173:446–447CrossRefPubMedGoogle Scholar
  87. Stoks PG, Schwartz AW (1981) Nitrogen-heterocyclic compounds in Meteorites – significance and mechanisms of formation. Geochim Cosmochim Acta 45:563–569CrossRefGoogle Scholar
  88. Stoks PG, Schwartz AW (1982) Basic nitrogen-heterocyclic compounds in the Murchison meteorite. Geochim Cosmochim Acta 46:309–315CrossRefGoogle Scholar
  89. Strašák M, Šeršeň F (1991) An unusual reaction of adenine and adenosine on montmorillonite. Naturwissenschaften 78(3):121–122CrossRefGoogle Scholar
  90. Switzer CMSBS (1989) Enzymatic incorporation of a new base pair into DNA and RNA. J Am Chem Soc 111:8322–8323CrossRefGoogle Scholar
  91. Tian F, Toon OB, Pavlov AA, De Sterck H (2005) A hydrogen-rich early Earth atmosphere. Science 308:1014–1017CrossRefPubMedGoogle Scholar
  92. Van der Velden W, Schwartz AW (1974) Purines and pyrimidines in sediments from Lake Erie. Science 185(4152):691–693CrossRefGoogle Scholar
  93. Voet AB, Schwartz AW (1982) Uracil synthesis via HCN oligomerization. Orig Life 12:45–49CrossRefPubMedGoogle Scholar
  94. Voet AB, Schwartz AW (1983) Prebiotic adenine synthesis from HCN—Evidence for a newly discovered major pathway. Bioorg Chem 12:8–17CrossRefGoogle Scholar
  95. Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484PubMedPubMedCentralGoogle Scholar
  96. Wang HC, Susko E, Roger AJ (2006) On the correlation between genomic G+C content and optimal growth temperature in prokaryotes: data quality and confounding factors. Biochem Biophys Res Commun 342(3):681–684CrossRefPubMedGoogle Scholar
  97. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738CrossRefPubMedGoogle Scholar
  98. Willerslev E, Hansen AJ, Rønn R, Brand TB, Barnes I, Wiuf C, Gilichinsky D, Mitchell D, Cooper A (2004) Long-term persistence of bacterial DNA. Curr Biol 14(1):R9–R10CrossRefPubMedGoogle Scholar
  99. Woese CR (1967) The genetic code: the molecular basis for genetic expression. Harper & Row, New YorkGoogle Scholar
  100. Wolman Y, Haverland WJ, Miller SL (1972) Nonprotein amino acids from spark discharges and their comparison with the Murchison meteorite amino acids. Proc Natl Acad Sci U S A 69:809–811CrossRefPubMedPubMedCentralGoogle Scholar
  101. Yoshino D, Hayatsu R, Anders E (1971) Origin of organic matter in early solar system. 3. Amino acids – catalytic synthesis. Geochim Cosmochim Acta 35:927–938CrossRefGoogle Scholar
  102. Zubay G (1993) To what extent do biochemical pathways mimic prebiotic pathways? Chemtracts Biochem Mol Biol 4:317–323Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Earth-Life Science InstituteTokyo Institute of TechnologyTokyoJapan
  2. 2.The Institute for Advanced StudyPrincetonUSA
  3. 3.Blue Marble Space Institute of ScienceWashington, DCUSA
  4. 4.NSF-NASA Center for Chemical EvolutionGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations