Advertisement

Exposing Digital Forgeries by Detecting a Contextual Violation Using Deep Neural Networks

  • Jong-Uk Hou
  • Han-Ul Jang
  • Jin-Seok Park
  • Heung-Kyu LeeEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10763)

Abstract

Previous digital image forensics focused on the low-level features that include traces of the image modifying history. In this paper, we present a framework to detect the manipulation of images through a contextual violation. First, we proposed a context learning convolutional neural networks (CL-CNN) that detects the contextual violation in the image. In combination with a well-known object detector such as R-CNN, the proposed method can evaluate the contextual scores according to the combination of objects in the image. Through experiments, we showed that our method effectively detects the contextual violation in the target image.

Notes

Acknowledgement

This work was supported by the Institute for Information & communications Technology Promotion (IITP) grant funded by the Korean government (MSIP) (2017-0-01671, Development of high reliability elementary image authentication technology for smart media environment).

References

  1. 1.
    Chen, M., Fridrich, J., Goljan, M., Lukas, J.: Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 3(1), 74–90 (2008)CrossRefGoogle Scholar
  2. 2.
    Choi, C.H., Lee, H.Y., Lee, H.K.: Estimation of color modification in digital images by CFA pattern change. Forensic Sci. Int. 226, 94–105 (2013)CrossRefGoogle Scholar
  3. 3.
    Farid, H.: Exposing digital forgeries from JPEG ghosts. IEEE Trans. Inf. Forensics Secur. 4(1), 154–160 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)Google Scholar
  5. 5.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)Google Scholar
  6. 6.
    Hou, J.U., Jang, H.U., Lee, H.K.: Hue modification estimation using sensor pattern noise. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 5287–5291, October 2014Google Scholar
  7. 7.
    Hou, J.U., Lee, H.K.: Detection of hue modification using photo response non-uniformity. IEEE Transactions on Circuits and Systems for Video Technology (2016)Google Scholar
  8. 8.
    Huang, H., Guo, W., Zhang, Y.: Detection of copy-move forgery in digital images using SIFT algorithm. In: Pacific-Asia Workshop on Computational Intelligence and Industrial Application, PACIIA 2008, vol. 2, pp. 272–276, December 2008Google Scholar
  9. 9.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)
  10. 10.
    Johnson, M.K., Farid, H.: Exposing digital forgeries in complex lighting environments. IEEE Trans. Inf. Forensics Secur. 2(3), 450–461 (2007)CrossRefGoogle Scholar
  11. 11.
    Kee, E., O’brien, J.F., Farid, H.: Exposing photo manipulation from shading and shadows. ACM Trans. Graph. 33(5), Article No. 165 (2014)Google Scholar
  12. 12.
    Lin, D., Lu, C., Liao, R., Jia, J.: Learning important spatial pooling regions for scene classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3726–3733 (2014)Google Scholar
  13. 13.
    Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10602-1_48CrossRefGoogle Scholar
  14. 14.
    Popescu, A., Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE Trans. Sig. Process. 53(2), 758–767 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)Google Scholar
  16. 16.
    Ryu, S.J., Kirchner, M., Lee, M.J., Lee, H.K.: Rotation invariant localization of duplicated image regions based on Zernike moments. IEEE Trans. Inf. Forensics Secur. 8(8), 1355–1370 (2013)CrossRefGoogle Scholar
  17. 17.
    Zhang, F., Du, B., Zhang, L.: Saliency-guided unsupervised feature learning for scene classification. IEEE Trans. Geosci. Remote Sens. 53(4), 2175–2184 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jong-Uk Hou
    • 1
  • Han-Ul Jang
    • 1
  • Jin-Seok Park
    • 1
  • Heung-Kyu Lee
    • 1
    Email author
  1. 1.School of ComputingKAISTDaejeonRepublic of Korea

Personalised recommendations