Actinopterygians: Head, Jaws and Muscles

  • Alessia Huby
  • Eric ParmentierEmail author
Part of the Fascinating Life Sciences book series (FLS)


This chapter is targeted to a broad scientific audience such as students and non-specialists who would like to explore and understand the diversity of the head, jaws and cranial muscles encountered within the large class of ray-finned fishes (Actinopterygii). Actinopterygians are a wide group of bony fishes including more than 30,000 species, which means that it is obviously not possible to carry out a case-by-case assessment or to condense the subject in a few pages. Therefore, we have described the role of the musculoskeletal elements of the head occurring during breathing and feeding in a ray-finned fish representative of the group, as well as we have demonstrated that the actinopterygian skull is truly distinctive among vertebrates. We have also tried to explain the main information concerning the diversification and evolution of the jaws and muscles of the five extant actinopterygian lineages with more specificities on teleostean fishes which are the most diverse and advanced clade.


Actinopterygii Ray-finned fishes Head Jaws Muscles Diversity Anatomy Function Biomechanics Evolution 


  1. Aerts P (1991) Hyoid morphology and movements relative to abducting forces during feeding in Astatotilapia elegans (Teleostei: Cichlidae). J Morphol 208(3):323–345PubMedCrossRefGoogle Scholar
  2. Alexander RM (1964) Adaptation in the skulls and cranial muscles of south American characinoid fish. Zool J Linnean Soc 45(305):169–190CrossRefGoogle Scholar
  3. Alexander RM (1967) The functions and mechanisms of the protrusible upper jaws of some acanthopterygian fish. J Zool 151(1):43–64CrossRefGoogle Scholar
  4. Alfaro ME, Janovetz J, Westneat MW (2001) Motor control across trophic strategies: muscle activity of biting and suction feeding fishes. Am Zool 41(6):1266–1279Google Scholar
  5. Alfaro ME et al (2009) Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci U S A 106(32):13410–13414PubMedPubMedCentralCrossRefGoogle Scholar
  6. Allis EP (1897) The cranial muscles and cranial and first spinal nerves in Amia calva. GinnGoogle Scholar
  7. Allis EP (1919) The homologies of the maxillary and vomer bones of Polypterus. Dev Dyn 25(4):348–394Google Scholar
  8. Allis EP (1922) The cranial anatomy of Polypterus, with special reference to Polypterus bichir. J Anat 56(3-4):189–294PubMedPubMedCentralGoogle Scholar
  9. Ballintijn CM, Hughes GM (1965) The muscular basis of the respiratory pumps in the trout. J Exp Biol 43(2):349–362Google Scholar
  10. Ballintijn CM, Van Den Burg A, Egberink BP (1972) An electromyographic study of the adductor mandibulae complex of a free-swimming carp (Cyprinus carpio L.) during feeding. J Exp Biol 57(1):261–283Google Scholar
  11. Barel CDN (1983) Towards a constructional morphology of cichlid fishes (Teleostei, Perciformes). Neth J Zool 33(4):357–424CrossRefGoogle Scholar
  12. Bemis WE, Forey PL (2001) Occipital structure and the posterior limit of the skull in actinopterygians. In: Major events in early vertebrate evolution: palaeontology, phylogeny, genetics and development. Taylor & Francis, London, pp 41–62Google Scholar
  13. Bemis WE, Findeis EK, Grande L (1997) An overview of Acipenseriformes. Environ Biol Fish 48(1-4):25–71CrossRefGoogle Scholar
  14. Blot J (1966) Étude des Palaeonisciformes du bassin houiller de Commentry. Allier, ParisGoogle Scholar
  15. Brainerd EL, Ferry-Graham LA (2005) Mechanics of respiratory pumps. Fish Physiol 23:1–28CrossRefGoogle Scholar
  16. Camp AL, Konow N, Sanford CPJ (2009) Functional morphology and biomechanics of the tongue-bite apparatus in salmonid and osteoglossomorph fishes. J Anat 214(5):717–728PubMedPubMedCentralCrossRefGoogle Scholar
  17. Camp AL, Roberts TJ, Brainerd EL (2015) Swimming muscles power suction feeding in largemouth bass. Proc Natl Acad Sci U S A 112(28):8690–8695PubMedPubMedCentralCrossRefGoogle Scholar
  18. Carroll AM (2004) Muscle activation and strain during suction feeding in the largemouth bass Micropterus salmoides. J Exp Biol 207(6):983–991PubMedCrossRefGoogle Scholar
  19. Carroll AM, Wainwright PC (2003) Functional morphology of prey capture in the sturgeon, Scaphirhynchus albus. J Morphol 256(3):270–284PubMedCrossRefPubMedCentralGoogle Scholar
  20. Carroll AM et al (2004) Morphology predicts suction feeding performance in centrarchid fishes. J Exp Biol 207(22):3873–3881PubMedCrossRefGoogle Scholar
  21. Carvalho M, Vari RP (2015) Development of the splanchnocranium in Prochilodus argenteus (Teleostei: Characiformes) with a discussion of the basal developmental patterns in the Otophysi. Zoology 118(1):34–50PubMedCrossRefGoogle Scholar
  22. Cloutier R, Arratia G (2004) Early diversification of actinopterygians. In: Recent advances in the origin and early radiation of vertebrates. Pfeil, Munich, pp 217–270Google Scholar
  23. Cubbage CC, Mabee PM (1996) Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi, Cyprinidae). J Morphol 229(2):121–160PubMedCrossRefGoogle Scholar
  24. Datovo A, Bockmann FA (2010) Dorsolateral head muscles of the catfish families Nematogenyidae and Trichomycteridae (Siluriformes: Loricarioidei): comparative anatomy and phylogenetic analysis. Neotrop Ichthyol 8(2):193–246CrossRefGoogle Scholar
  25. Datovo A, Castro RMC (2012) Anatomy and evolution of the mandibular, hyopalatine, and opercular muscles in characiform fishes (Teleostei: Ostariophysi). Zoology 115(2):84–116PubMedCrossRefGoogle Scholar
  26. Datovo A, Vari RP (2013) The jaw adductor muscle complex in teleostean fishes: evolution, homologies and revised nomenclature (osteichthyes: actinopterygii). PLoS One 8(4):e60846PubMedPubMedCentralCrossRefGoogle Scholar
  27. Datovo A, Vari RP (2014) The adductor mandibulae muscle complex in lower teleostean fishes (Osteichthyes: Actinopterygii): comparative anatomy, synonymy, and phylogenetic implications. Zool J Linnean Soc 171(3):552–622CrossRefGoogle Scholar
  28. Day SW et al (2005) Sucking while swimming: evaluating the effects of ram speed on suction generation in bluegill sunfish Lepomis macrochirus using digital particle image velocimetry. J Exp Biol 208(14):2653–2660PubMedCrossRefGoogle Scholar
  29. Day SW, Higham TE, Wainwright PC (2007) Time resolved measurements of the flow generated by suction feeding fish. Exp Fluids 43(5):713–724CrossRefGoogle Scholar
  30. De Schepper N, Adriaens D, De Kegel B (2005) Moringua edwardsi (Moringuidae: Anguilliformes): cranial specialization for head-first burrowing. J Morphol 266(3):356–368PubMedCrossRefGoogle Scholar
  31. De Schepper N, De Kegel B, Adriaens D (2007) Pisodonophis boro (Ophichthidae: Anguilliformes): specialization for head-first and tail-first burrowing. J Morphol 268(2):112–126PubMedCrossRefGoogle Scholar
  32. Deary AL, Hilton EJ (2016) Comparative ontogeny of the feeding apparatus of sympatric drums (Perciformes: Sciaenidae) in the Chesapeake Bay. J Morphol 277(2):183–195PubMedCrossRefGoogle Scholar
  33. Delsman HC (1925) Fishes with protrusile mouths. Treubia 6:98–106Google Scholar
  34. Diogo R (2008) The origin of higher clades: osteology, myology, phylogeny and evolution of bony fishes and the rise of tetrapods. Science, New YorkCrossRefGoogle Scholar
  35. Diogo R, Abdala V (2010) Muscles of vertebrates: comparative anatomy, evolution, homologies and development. CRC Press, Boca RatonCrossRefGoogle Scholar
  36. Diogo R, Chardon M (2000a) Anatomie et fonction des structures céphaliques associées à la prise de nourriture chez le genre Chrysichthys (Teleostei: Siluriformes). Belg J Zool 130(1):21–37Google Scholar
  37. Diogo R, Chardon M (2000b) Homologies among different adductor mandibuale sections of teleostan fishes, with special regard to catfishes (Teleostei: Siluriformes). J Morphol 243(2):193–208PubMedCrossRefPubMedCentralGoogle Scholar
  38. Diogo R, Hinits Y, Hughes SM (2008) Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods. BMC Dev Biol 8(1):24PubMedPubMedCentralCrossRefGoogle Scholar
  39. Eagderi S, Adriaens D (2010) Cephalic morphology of Pythonichthys macrurus (Heterenchelyidae: Anguilliformes): specializations for head-first burrowing. J Morphol 271(9):1053–1065PubMedCrossRefPubMedCentralGoogle Scholar
  40. Edgeworth FH (1935) The cranial muscles of vertebrates. Cambridge University Press, CambridgeGoogle Scholar
  41. Engeman JM, Aspinwall N, Mabee PM (2009) Development of the pharyngeal arch skeleton in Catostomus commersonii (Teleostei: Cypriniformes). J Morphol 270(3):291–305PubMedCrossRefGoogle Scholar
  42. Faustino M, Power DM (2001) Osteologic development of the viscerocranial skeleton in sea bream: alternative ossification strategies in teleost fish. J Fish Biol 58(2):537–572CrossRefGoogle Scholar
  43. Ferry LA, Paig-Tran EM, Gibb AC (2015) Suction, ram, and biting: deviations and limitations to the capture of aquatic prey. Integr Comp Biol 55(1):97–109PubMedCrossRefGoogle Scholar
  44. Ferry-Graham LA, Lauder GV, Hulsey CD (2001) Aquatic prey capture in ray-finned fishes: a century of progress and new directions. J Morphol 248(2):99–119PubMedCrossRefGoogle Scholar
  45. Fraser GJ et al (2009) An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol 7(2):e1000031PubMedCentralCrossRefPubMedGoogle Scholar
  46. Geerinckx T et al (2007) A head with a suckermouth: a functional-morphological study of the head of the suckermouth armoured catfish Ancistrus cf. triradiatus (Loricariidae, Siluriformes). Belg J Zool 137(1):47–66Google Scholar
  47. Géry J (1962) Pterohemiodus luelingi sp. nov., un curieux poisson characoïde à nageoire dorsale filamenteuse, avec une clé des genres d’Hemiodontinae (Ostariophysi-Erythrinidae). Bonner zoologische Beiträge 59(12):332–342Google Scholar
  48. Géry J (1963) L’appareil protracteur buccal de Bivibranchia (Characoidei) avec une note sur Phractolaemus (Chanoidei) (Pisces). Vie et Milieu 13(4):729–740Google Scholar
  49. Gibb A (1996) The kinematics of prey capture in Xystreurys liolepis: do all flatfish feed asymmetrically? J Exp Biol 199(10):2269–2283PubMedGoogle Scholar
  50. Gidmark NJ et al (2012) Flexibility in starting posture drives flexibility in kinematic behavior of the kinethmoid-mediated premaxillary protrusion mechanism in a cyprinid fish, Cyprinus carpio. J Exp Biol 215(13):2262–2272PubMedCrossRefGoogle Scholar
  51. Gidmark NJ et al (2015) Functional morphology of durophagy in black carp, Mylopharyngodon piceus. J Morphol 276(12):1422–1432PubMedCrossRefGoogle Scholar
  52. Goodrich ES (1958) Studies on the structure and development of vertebrates, vol II. Macmillan, LondonGoogle Scholar
  53. Gosline WA (1973) Considerations regarding the phylogeny of cypriniform fishes, with special reference to structures associated with feeding. Copeia 1973(4):761–776CrossRefGoogle Scholar
  54. Gosline WA (1980) The evolution of some structural systems with reference to the interrelationships of modern lower teleostean fish groups. Japan J Ichthyol 27(1):1–28Google Scholar
  55. Gosline WA (1989) Two patterns of differentiation in the jaw musculature of teleostean fishes. J Zool 218(4):649–661CrossRefGoogle Scholar
  56. Grande T, Poyato-Ariza FJ (1999) Phylogenetic relationships of fossil and recent gonorynchiform fishes (Teleostei: Ostariophysi). Zool J Linnean Soc 125(2):197–238CrossRefGoogle Scholar
  57. Grande T, Poyato-Ariza FJ, Diogo R (2010) Gonorynchiformes and Ostariophysan relationships: a comprehensive review. Science, New YorkCrossRefGoogle Scholar
  58. Greenwood PH et al (1966) Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bulletin of the AMNH 131:4Google Scholar
  59. Grubich JR (2001) Prey capture in actinopterygian fishes: a review of suction feeding motor patterns with new evidence from an elopomorph fish, Megalops atlanticus. Am Zool 41(6):1258–1265Google Scholar
  60. Helfman GS et al (2009) The diversity of fishes: biology, evolution, and ecology. Wiley, Hoboken, NJGoogle Scholar
  61. Herbing IHV et al (1996) Ontogeny of feeding and respiration in larval Atlantic cod Gadus morhua (Teleostei, Gadiformes): I. Morphology. J Morphol 227(1):15–35PubMedCrossRefGoogle Scholar
  62. Hernandez LP, Staab KL (2015) Bottom feeding and beyond: how the premaxillary protrusion of cypriniforms allowed for a novel kind of suction feeding. Integr Comp Biol 55(1):74–84PubMedCrossRefGoogle Scholar
  63. Hernandez PL, Bird NC, Staab KL (2007) Using zebrafish to investigate cypriniform evolutionary novelties: functional development and evolutionary diversification of the kinethmoid. J Exp Zool B Mol Dev Evol 308(5):625–641CrossRefGoogle Scholar
  64. Higham TE, Day SW, Wainwright PC (2006a) Multidimensional analysis of suction feeding performance in fishes: fluid speed, acceleration, strike accuracy and the ingested volume of water. J Exp Biol 209(14):2713–2725PubMedCrossRefGoogle Scholar
  65. Higham TE, Day SW, Wainwright PC (2006b) The pressures of suction feeding: the relation between buccal pressure and induced fluid speed in centrarchid fishes. J Exp Biol 209(17):3281–3287PubMedCrossRefGoogle Scholar
  66. Holzman R et al (2008) Jaw protrusion enhances forces exerted on prey by suction feeding fishes. J R Soc Interface 5(29):1445–1457PubMedPubMedCentralCrossRefGoogle Scholar
  67. Huber DR et al (2005) Analysis of the bite force and mechanical design of the feeding mechanism of the durophagous horn shark Heterodontus francisci. J Exp Biol 208(18):3553–3571PubMedCrossRefGoogle Scholar
  68. Hughes GM, Shelton G (1958) The mechanism of gill ventilation in three freshwater teleosts. J Exp Biol 35(4):807–823Google Scholar
  69. Hulsey CD, Garcia De Leon FJ (2005) Cichlid jaw mechanics: linking morphology to feeding specialization. Funct Ecol 19(3):487–494CrossRefGoogle Scholar
  70. Inoue JG et al (2003) Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the “ancient fish”. Mol Phylogenet Evol 26(1):110–120PubMedCrossRefGoogle Scholar
  71. Janvier P (1996) Early vertebrates. Oxford University Press, New York, NYGoogle Scholar
  72. Kammerer CF, Grande L, Westneat MW (2006) Comparative and developmental functional morphology of the jaws of living and fossil gars (Actinopterygii: Lepisosteidae). J Morphol 267(9):1017–1031PubMedCrossRefGoogle Scholar
  73. Kardong KV (2012) Vertebrates: comparative anatomy, function, evolution. McGraw-Hill Higher Education, New YorkGoogle Scholar
  74. Kimmel CB et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310PubMedCrossRefGoogle Scholar
  75. Kimmel CB et al (2001) Neural crest patterning and the evolution of the jaw. J Anat 199(1–2):105–119PubMedCrossRefGoogle Scholar
  76. Konstantinidis P et al (2015) The developmental pattern of the musculature associated with the mandibular and hyoid arches in the longnose gar, Lepisosteus osseus (Actinopterygii, Ginglymodi, Lepisosteiformes). Copeia 103(4):920–932CrossRefGoogle Scholar
  77. Lauder GV (1980) Evolution of the feeding mechanism in primitive actinopterygian fishes: a functional anatomical analysis of Polypterus, Lepisosteus, and Amia. J Morphol 163(3):283–317PubMedCrossRefGoogle Scholar
  78. Lauder GV (1982) Patterns of evolution in the feeding mechanism of actinopterygian fishes. Am Zool 22(2):275–285CrossRefGoogle Scholar
  79. Lauder GV (1985) Aquatic feeding in lower vertebrates. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Harvard University Press, Cambridge, pp 210–229Google Scholar
  80. Lauder GV, Liem KF (1980) The feeding mechanism and cephalic myology of Salvelinus fontinalis: form, function, and evolutionary significance. In: Charrs: Salomnids of the genus Salvelinus, pp 365–390Google Scholar
  81. Lauder GV, Liem KF (1981) Prey capture by Luciocephalus pulcher: implications for models of jaw protrusion in teleost fishes. Environ Biol Fish 6(3):257–268CrossRefGoogle Scholar
  82. Lauder GV, Liem KF (1983) Patterns of diversity and evolution in ray-finned fishes. Fish Neurobiol 1:1–24Google Scholar
  83. Lecointre G, Le Guyader H (2001) Classification phylogénétique du vivant, vol Vol. 2. Belin, ParisGoogle Scholar
  84. Liem KF (1967) Functional morphology of the head of the anabantoid teleost fish Helostoma temmincki. J Morphol 121(2):135–157PubMedCrossRefGoogle Scholar
  85. Liem KF (1978) Modulatory multiplicity in the functional repertoire of the feeding mechanism in cichlids fishes. Part I. Piscivores. J Morphol 158(3):323–360PubMedCrossRefGoogle Scholar
  86. Liem KF (1980) Adaptive significance of intra-and interspecific differences in the feeding repertoires of cichlid fishes. Am Zool 20(1):295–314CrossRefGoogle Scholar
  87. Liem KF (1990) Aquatic versus terrestrial feeding modes: possible impacts on the trophic ecology of vertebrates. Am Zool 30(1):209–221CrossRefGoogle Scholar
  88. López-Fernández H et al (2012) Diet-morphology correlations in the radiation of South American geophagine cichlids (Perciformes: Cichlidae: Cichlinae). PLoS One 7(4):e33997PubMedPubMedCentralCrossRefGoogle Scholar
  89. McCord CL, Westneat MW (2016) Evolutionary patterns of shape and functional diversification in the skull and jaw musculature of triggerfishes (Teleostei: Balistidae). J Morphol 277(6):737–752PubMedCrossRefGoogle Scholar
  90. Miller MJ (2004) The ecology and functional morphology of feeding of North American sturgeon and paddlefish. In: Sturgeons and paddlefish of North America. Springer, Dordrecht, pp 87–102Google Scholar
  91. Miller RF, McGovern JH (1996) Preliminary report of fossil fish (Actinopterygii: Palaeonisciformes) from the Lower Carboniferous Albert Formation at Norton, New Brunswick (NTS 21 H/12). Current research, pp 97–104Google Scholar
  92. Motta PJ (1984) Mechanics and functions of jaw protrusion in teleost fishes: a review. Copeia 1984(1):1–18CrossRefGoogle Scholar
  93. Motta PJ, Huber DR (2004) Prey capture behavior and feeding mechanics of elasmobranchs. In: Biology of sharks and their relatives, 2nd edn. Taylor & Francis, London, pp 153–197Google Scholar
  94. Muller M (1987) Optimization principles applied to the mechanism of neurocranium levation and mouth bottom depression in bony fishes (Halecostomi). J Theor Biol 126(3):343–368CrossRefGoogle Scholar
  95. Muller M, Osse JWM, Verhagen JHG (1982) A quantitative hydrodynamical model of suction feeding in fish. J Theor Biol 95(1):49–79CrossRefGoogle Scholar
  96. Nelson JS (1994) Fishes of the world. Wiley, New YorkGoogle Scholar
  97. Nelson JS (2006) Fishes of the world. Wiley, HobokenGoogle Scholar
  98. Nelson JS, Grande T, Wilson MVH (2016) Fishes of the world. Wiley, New YorkCrossRefGoogle Scholar
  99. Noda M, Miyake T, Okabe M (2017) Development of cranial muscles in the actinopterygian fish Senegal bichir, Polypterus senegalus Cuvier, 1829. J Morphol 278(4):450–463PubMedCrossRefGoogle Scholar
  100. Osse JWM (1969) Functional morphology of the head of the perch (Perca Fluviatilis L.): an electromyographic study. Neth J Zool 19(3):289–392CrossRefGoogle Scholar
  101. Osse JWM (1985) Jaw protrusion, an optimization of the feeding apparatus of teleosts? Acta Biotheor 34(2):219–232CrossRefGoogle Scholar
  102. Owen R (1846) Lectures on the comparative anatomy and physiology of the vertebrate animals: Delivered at the Royal College of Surgeons of England, in 1844 and 1846. Volume 2. Part I - Fishes. Longman, Brown, Green, and LongmansGoogle Scholar
  103. Owen R (1866) Comparative anatomy and physiology of vertebrates: fishes and reptiles. Longman, HarlowGoogle Scholar
  104. Parmentier E (2003) Contribution à l’étude des relations entre des poissons de la famille des Carapidae et leurs hôtes invertébrés: une approche mutidisciplinaire. University of Liège, LiègeGoogle Scholar
  105. Parmentier E et al (1998) Morphology of the buccal apparatus and related structures in four species of Carapidae. Aust J Zool 46(4):391–404CrossRefGoogle Scholar
  106. Parmentier E, Vandewalle P, Lagardere F (2001) Morpho-anatomy of the otic region in carapid fishes: eco-morphological study of their otoliths. J Fish Biol 58(4):1046–1061CrossRefGoogle Scholar
  107. Patterson C (1994) Bony fishes. In: Prothero DR, Schoch RM (eds) Major features of vertebrate evolution, Short courses in paleontology, vol 7. Paleontological Society, University of Tennessee, Knoxville, pp 57–84Google Scholar
  108. Peng Z et al (2009) Teleost fishes (Teleostei). The timetree of life. Oxford University Press, Oxford, pp 335–338Google Scholar
  109. Poplin CM (1984) Lawrenciella schaefferi n.g., n.sp. (Pisces: Actinopterygii) and the use of endocranial characters in the classification of the Palaeonisciformes. J Vertebr Paleontol 4(3):413–421CrossRefGoogle Scholar
  110. Regan CT (1911) LXV. The classification of the teleostean fishes of the order Ostariophysi—2. Siluroidea. Ann Mag Nat Hist 8(47):553–577CrossRefGoogle Scholar
  111. Roberts TR (1974) Dental polymorphism and systematics in Saccodon, a neotropical genus of freshwater fishes (Parodontidae, Characoidei). J Zool 173(3):303–321CrossRefGoogle Scholar
  112. Rosen DE (1982) Teleostean interrelationships, morphological function and evolutionary inference. Am Zool 22(2):261–273CrossRefGoogle Scholar
  113. Sanford CP, Lauder GV (1989) Functional morphology of the tongue-bite in the osteoglossomorph fish Notopterus. J Morphol 202(3):379–408PubMedCrossRefGoogle Scholar
  114. Schaeffer B, Rosen BE (1961) Major adaptive levels in the evolution of the actinopterygian feeding mechanism. Am Zool 1(2):187–204CrossRefGoogle Scholar
  115. Schilling TF, Kimmel CB (1994) Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120(3):483–494PubMedGoogle Scholar
  116. Schilling TF, Kimmel CB (1997) Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development 124(15):2945–2960PubMedGoogle Scholar
  117. Shadwick RE, Lauder GV (2006) Fish physiology: fish biomechanics, vol 23. Academic Press, CambridgeGoogle Scholar
  118. Staab KL, Hernandez LP (2010) Development of the cypriniform protrusible jaw complex in Danio rerio: constructional insights for evolution. J Morphol 271(7):814–825PubMedGoogle Scholar
  119. Staab KL et al (2012) Independently evolved upper jaw protrusion mechanisms show convergent hydrodynamic function in teleost fishes. J Exp Biol 215(9):1456–1463PubMedCrossRefGoogle Scholar
  120. Thys van den Audenaerde DFE (1961) L’anatomie de Phractolaemus ansorgei Blgr. et la position systématique des Phractolaemidae. Annales du Musée Royal de l’Afrique Centrale, Sciences Zoologiques, série 8(103):101–167Google Scholar
  121. Traquair RH (1870) The cranial osteology of Polypterus. J Anat Physiol 5(Pt 1):166–184PubMedPubMedCentralGoogle Scholar
  122. Van Wassenbergh S, Aerts P, Herrel A (2005) Scaling of suction-feeding kinematics and dynamics in the African catfish, Clarias gariepinus. J Exp Biol 208(11):2103–2114PubMedCrossRefGoogle Scholar
  123. Vandewalle P et al (1992) Early development of the cephalic skeleton of Barbus barbus (Teleostei, Cyprinidae). J Fish Biol 41(1):43–62CrossRefGoogle Scholar
  124. Vandewalle P et al (1997) Postembryonic development of the cephalic region in Heterobranchus longifilis. J Fish Biol 50(2):227–253Google Scholar
  125. Vandewalle P, Parmentier E, Chardon M (2000) The branchial basket in teleost feeding. Cybium 24(4):319–342Google Scholar
  126. Vari RP (1985) A new species of Bivibranchia (Pisces: Characiformes) from Surinam, with comments on the genus. Proc Biol Soc Wash 98(2):511–522Google Scholar
  127. Vari RP, Goulding M (1985) A new species of Bivibranchia (Pisces: Characiformes) from the Amazon River basin. Proc Biol Soc Wash 98(4):1054–1061Google Scholar
  128. Venkatesh B, Erdmann MV, Brenner S (2001) Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates. Proc Natl Acad Sci U S A 98(20):11382–11387PubMedPubMedCentralCrossRefGoogle Scholar
  129. Vrba ES (1968) Contributions to the functional morphology of fishes. Part V The feeding mechanism of Elops taurus Linnaeus. Afr Zool 3(2):211–236CrossRefGoogle Scholar
  130. Wainwright PC et al (1989) Evolution of motor patterns: aquatic feeding in salamanders and ray-finned fishes. Brain Behav Evol 34(6):329–341PubMedCrossRefGoogle Scholar
  131. Wainwright PC et al (2001) Evaluating the use of ram and suction during prey capture by cichlid fishes. J Exp Biol 204(17):3039–3051PubMedGoogle Scholar
  132. Wainwright P et al (2007) Suction feeding mechanics, performance, and diversity in fishes. Integr Comp Biol 47(1):96–106PubMedCrossRefGoogle Scholar
  133. Wainwright PC et al (2015) Origins, innovations, and diversification of suction feeding in vertebrates. Integr Comp Biol 55(1):134–145PubMedCrossRefGoogle Scholar
  134. Waltzek TB, Wainwright PC (2003) Functional morphology of extreme jaw protrusion in Neotropical cichlids. J Morphol 257(1):96–106PubMedCrossRefGoogle Scholar
  135. Westneat MW (1994) Transmission of force and velocity in the feeding mechanisms of labrid fishes (Teleostei, Perciformes). Zoomorphology 114(2):103–118CrossRefGoogle Scholar
  136. Westneat MW (2004) Evolution of levers and linkages in the feeding mechanisms of fishes. Integr Comp Biol 44(5):378–389PubMedCrossRefGoogle Scholar
  137. Westneat MW (2005) Skull biomechanics and suction feeding in fishes. Fish Physiol 23:29–75CrossRefGoogle Scholar
  138. Westneat MW, Olsen AM (2015) How fish power suction feeding. Proc Natl Acad Sci 112(28):8525–8526PubMedCrossRefGoogle Scholar
  139. Westneat MW, Wainwright PC (1989) Feeding mechanism of Epibulus insidiator (Labridae; Teleostei): evolution of a novel functional system. J Morphol 202(2):129–150PubMedCrossRefGoogle Scholar
  140. Wilga C, Motta P (1998) Conservation and variation in the feeding mechanism of the spiny dogfish Squalus acanthias. J Exp Biol 201(9):1345–1358PubMedGoogle Scholar
  141. Wilson MVH, Veilleux P (1982) Comparative osteology and relationships of the Umbridae (Pisces: Salmoniformes). Zool J Linnean Soc 76(4):321–352CrossRefGoogle Scholar
  142. Winterbottom R (1974) A descriptive synonymy of the striated muscles of the Teleostei. Proc Acad Natl Sci Phila 125(125):225–317Google Scholar
  143. Wu KY, Shen SC (2004) Review of the teleostean adductor mandibulae and its significance to the systematic positions of the Polymixiiformes, Lampridiformes, and Triacanthoidei. Zool Stud 43(4):712–736Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Functional and Evolutionary MorphologyUniversity of Liège, Quartier Agora, Institut de ChimieLiègeBelgium

Personalised recommendations