Advertisement

Chondrichthyan Evolution, Diversity, and Senses

  • Catherine A. Boisvert
  • Peter Johnston
  • Kate Trinajstic
  • Zerina JohansonEmail author
Chapter
Part of the Fascinating Life Sciences book series (FLS)

Abstract

Chondrichthyans are one of two major clades of living jawed vertebrates, with a rich fossil record potentially extending back to the Late Ordovician (455 million years ago, mya). The main groups of chondrichthyans include the chimaeroids, sharks, and skates and rays. This chapter outlines the major events in chondrichthyan evolution, focusing on features of the cranium, jaw and jaw musculature, and gill arch skeleton. The “spiny sharks” (acanthodians) and other stem chondrichthyans have recently been shown to exhibit a mosaic of chondrichthyan and osteichthyan characters. Taxa such as iniopterygians and chondrenchelyiforms, resolved as stem group chimaeroids, appear in the Carboniferous and display dramatic body forms and unusual fin morphology. Chondrichthyans also show a considerable range of dentitions, both in terms of morphology and development, particularly modified in the chimaeroids. In addition to their differing tooth morphologies, chondrichthyans have several types of jaw suspensions to support a range of feeding and breathing modes. Sharks have well-developed brains that vary according to the environment rather than phylogeny. Their senses are also well-developed and finely tuned to best perform in their particular ecological niche. The long evolutionary history of chondrichthyans and their great diversity as well as the retention of some primitive characters make them good models for evolutionary and developmental studies.

Keywords

Chimaeroids Sharks Skates Rays Aconthodians Iniopterygians Dentition Jaw suspension 

Notes

Acknowledgments

CB is supported by the Curtin Research Fellowship and the Australia Research Council grant DP 160104427 and KT by DP140104161. We thank the Western Australian Museum and the Natural History Museum for access to specimens. We wish to thank Alan Pradel, Tom Lisney, and an anonymous reviewer for improving the manuscript. We wish to thank Janine Ziermann, Rui Diogo, and Raul Diaz Jr for inviting us to contribute to this volume.

Further Readings

  1. Carrier JC, Musick JA, Heithaus MR (2012) Biology of sharks and their relatives, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  2. Helfman G, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes: biology, evolution and ecology, 2nd edn. Wiley, London. Chapters 3, 6, 8, 11, 12Google Scholar
  3. Janvier P (1996) Early vertebrates. Oxford University Press, New YorkGoogle Scholar
  4. Long JA (2011) The rise of fishes: 500 million years of evolution. The John Hopkins University Press, BaltimoreGoogle Scholar
  5. Deban SM (2003) Constraint and convergence in the evolution of salamander feeding. In: Gasc JP, Casinos A, Bels VL (eds) Vertebrate biomechanics and evolution. BIOS Scientific Publishers, Oxford, pp 163–180Google Scholar
  6. Deban SM, Wake DB (2000) Terrestrial feeding in salamanders. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic Press, San Diego, pp 65–94CrossRefGoogle Scholar

References

  1. Andreev PS, Coates MI, Shelton RM, Cooper PR, Smith PM, Sansom IJ (2015) Upper Ordovician chondrichthyan-like scales from North America. Palaeontology 58:691–704CrossRefGoogle Scholar
  2. Andreev PS, Coates MI, Karatajūtė-Talimaa V et al (2016) The systematics of the Mongolepidida (Chondrichthyes) and the Ordovician origins of the clade. Peer J 4:e1850PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ari C (2011) Encephalization and brain organization in mobulid rays (Myliobatiformes, Elasmobranchii) with ecological perspectives. Open Anat J 3:1–13CrossRefGoogle Scholar
  4. Aschliman NC, Nishida M, Miya M, Inoue JG, Rosana KM, Naylor GJP (2012) Body plan convergence in the evolution of skates and rays (Chondrichthyes: Batoidea). Mol Phylogenet Evol 63:28–42PubMedCrossRefPubMedCentralGoogle Scholar
  5. Atkinson CJL, Collin SP (2012) Structure and topographic distribution of oral denticles in elasmobranch fishes. Biol Bull 222:26–34PubMedCrossRefPubMedCentralGoogle Scholar
  6. Atkinson CJL, Martin KJ, Fraser GJ, Collin SP (2016) Morphology and distribution of taste papillae and oral denticles in the developing oropharyngeal cavity of the bamboo shark, Chiloscyllium punctatum. Biol Open 5:1759–1769PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baker CVH, Bronner-Fraser M (2001) Vertebrate cranial placodes I. Embryonic induction. Dev Biol 232:1–61PubMedCrossRefPubMedCentralGoogle Scholar
  8. Baker CVH, Modrell MS, Gillis JA (2013) The evolution and development of vertebrate lateral line electroreceptors. J Exp Biol 216:2515–2522PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bauchot R, Platel R, Ridet J-M (1976) Brain-body weight relationships in Selachii. Copeia 1976:305–310CrossRefGoogle Scholar
  10. Bauchot R, Bauchot ML, Platel R, Ridet JM (1977) The brains of Hawaiian tropical fishes: brain size and evolution. Copeia 1:42–46CrossRefGoogle Scholar
  11. Belbin RA, Underwood CJ, Johanson Z, Twitchett RJ (2017) Ecological impact of the end-Cretaceous extinction on lamniform sharks. PLoS One 12(6):e0178294CrossRefGoogle Scholar
  12. Bhattacharyya S, Bailey AP, Bronner-Fraser M, Streit A (2004) Segregation of lens and olfactory precursors from a common territory: cell sorting and reciprocity of Dlx5 and Pax6 expression. Dev Biol 271:403–414PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bigelow HB, Schroeder WC (1953) Fishes of the Gulf of Maine. Fish Bull 53:1–630Google Scholar
  14. Boisvert CA, Martins CL, Edmunds AG, Cocks J, Currie P (2015) Capture, transport, and husbandry of elephant sharks (Callorhinchus milii) adults, eggs, and hatchlings for research and display. Zoo Biol 34:94–98PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bozzano A (2004) Retinal specialisations in the dogfish Centroscymnus coelolepis from the Mediterranean deep-sea. Scientia Mar 68:185–195CrossRefGoogle Scholar
  16. Bozzano A, Murgia R, Vallerga S, Hirano J, Archer S (2001) The photoreceptor system in the retinae of two dogfishes, Scyliorhinus canicula and Galeus melastomus: possible relationship with depth distribution and predatory lifestyle. J Fish Biol 59:1258–1278CrossRefGoogle Scholar
  17. Brabrand A (1985) Food of roach (Rutilus rutilus) and ide (Leuciscus idus): Significance of diet shifts for interspecific competition in omnivorous fishes. Oecologia 66:461–467PubMedCrossRefPubMedCentralGoogle Scholar
  18. Brainerd EL, Ferry-Graham LA (2006) Mechanics of respiration. In: Shadwick R, Lauder G (eds) Biomechanics: A volume of the fish physiology series. Elsevier Science, New York, pp 1–29Google Scholar
  19. Brazeau MD (2008) Early jaw and braincase morphologies with unorthodox implications for basal gnathostome interrelationships. J Vert Paleo 56a:28Google Scholar
  20. Brazeau MD (2009) The braincase and jaws of a Devonian ‘acanthodian’ and modern gnathostome origins. Nature 457:305–308PubMedCrossRefPubMedCentralGoogle Scholar
  21. Brazeau MD, de Winter V (2015) The hyoid arch and braincase anatomy of Acanthodes support chondrichthyan affinity of ‘acanthodians’. Proc Biol Sci 282:20152210.  https://doi.org/10.1098/rspb.2015.2210 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Brazeau MD, Friedman M (2015) The origin and early phylogenetic history of jawed vertebrates. Nature 520:490–497PubMedPubMedCentralCrossRefGoogle Scholar
  23. Brazeau MD, Friedman M, Jerve A, Atwood RC (2017) A three-dimensional placoderm (stem-group gnathostome) pharyngeal skeleton and its implications for primitive gnathostome pharyngeal architecture. J Morphol 278:1220–1228PubMedPubMedCentralCrossRefGoogle Scholar
  24. Burrow CJ, Rudkin D (2014) Oldest near-complete acanthodian: the first vertebrate from the Silurian Bertie Formation Konservat-Lagerstätte, Ontario. PLoS One 9:e104171PubMedPubMedCentralCrossRefGoogle Scholar
  25. Burrow C, Turner S (2013) Scale structure of putative chondrichthyan Gladbachus adentatus Heidtke & Krätschmer, 2001 from the Middle Devonian Rheinisches Schiefergebirge, Germany. Hist Biol 25:385–390CrossRefGoogle Scholar
  26. Burrow C, Young GC (1999) An articulated teleostome from the Late Silurian (Ludlow) of Victoria, Australia. Rec West Aust Mus 57:1–14Google Scholar
  27. Carr R, Johanson Z, Ritchie A (2009) The phyllolepid placoderm Cowralepis mclachlani: Insights into the evolution of feeding mechanisms in jawed vertebrates. J Morphol 270:775–804PubMedCrossRefPubMedCentralGoogle Scholar
  28. Coates MI (2005) Gladbachus adentatus Heidtke and Kratschmer: an awkward addition to the set of early jawed fishes. Abstract, Society of Vertebrate Palaeontology and Comparative Anatomy, Annual Symposium, London. Palaeontological AssociationGoogle Scholar
  29. Coates MI, Sequeira SEK (2001) A new stethacanthid chondrichthyan from the Lower Carboniferous of Bearsden, Scotland. J Vert Paleo 21:438–459CrossRefGoogle Scholar
  30. Coates MI, Gess RW, Finarelli JA, Criswell KE, Tietjen K (2017) A symmoriiform chondrichthyan braincase and the origin of chimaeroid fishes. Nature 541:208–211PubMedCrossRefGoogle Scholar
  31. Coates MI, Finarelli JA, Sansom IJ, Andreev PS, Criswell KE, Tietjen K, Rivers ML, La Riviere PJ (2018) An early chondrichthyan and the evolutionary assembly of a shark body plan. Proc Biol Sci 285:20172418PubMedPubMedCentralCrossRefGoogle Scholar
  32. Corwin JT (1989) Functional anatomy of the auditory system in sharks and rays. J Exp Zool A Ecol Int Phys 252:62–74Google Scholar
  33. Darras L, Derycke C, Blieck AR, Vachard D (2008) The oldest holocephalan (Chondrichthyes) from the Middle Devonian of the Boulonnais (Pas-de-Calais, France). Comptes Rendus Palevol 7:297–304CrossRefGoogle Scholar
  34. Davies WL, Carvalho LS, Tay B-H, Brenner S, Hunt DM, Venkatesh B (2009) Into the blue: Gene duplication and loss underlie color vision adaptations in a deep-sea chimaera, the elephant shark Callorhinchus milii. Genome Res 19:415–426PubMedPubMedCentralCrossRefGoogle Scholar
  35. Davies WL, Tay B-H, Zheng K et al (2012) Evolution and functional characterisation of melanopsins in a deep-Sea Chimaera (Elephant Shark, Callorhinchus milii). PLoS One 7:e51276PubMedPubMedCentralCrossRefGoogle Scholar
  36. Davis SP, Finarelli JA, Coates MI (2012) Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes. Nature 486:247–250PubMedCrossRefGoogle Scholar
  37. Dean B (1894) Contributions to the morphology of Cladoselache (Cladodus). J Morphol 9:87–114CrossRefGoogle Scholar
  38. Dean B, Bhushan B (2010) Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philos Trans A Math Phys Eng Sci 368:4775–4806PubMedCrossRefPubMedCentralGoogle Scholar
  39. Dean MN, Summers AP (2006) Mineralized cartilage in the skeleton of chondrichthyan fishes. Zoology 109:164–168PubMedCrossRefPubMedCentralGoogle Scholar
  40. Dean MN, Ekstrom L, Monsonego-Ornan E et al (2015) Mineral homeostasis and regulation of mineralization processes in the skeletons of sharks, rays and relatives (Elasmobranchii). Semin Cell Dev Biol 46:51–67PubMedCrossRefGoogle Scholar
  41. Debiais-Thibaud M, Oulion S, Bourat F, Laurenti P, Casane D, Borday-Birraux V (2011) The homology of odontodes in gnathostomes: insights from Dlx gene expression in the dogfish, Scyliorhinus canicula. BMC Evol Biol 11:307PubMedPubMedCentralCrossRefGoogle Scholar
  42. Demski LS, Northcutt RG (1996) The brain and cranial nerves of the white shark: An evolutionary perspective. In: Klimley AP, Ainley DG (eds) Great white sharks. The Biology of Carcharodon carcharias. Academic Press, New York, pp 121–130CrossRefGoogle Scholar
  43. Didier DA (1995) Phylogenetic systematics of extant chimaeroid fishes (Holocephali, Chimaeroidei). Am Mus Novit 3119:1–86Google Scholar
  44. Fay RR, Kendall JI, Popper AN, Tester AL (1974) Vibration detection by the macula neglecta of sharks. Comp Biochem Physiol 47A:1235–1240CrossRefGoogle Scholar
  45. Ferrrando S, Gallus L, Gambardella C, Croce D, Damiano G, Mazzarino C, Vacchi M (2016) First description of a palatal organ in Chimaera monstrosa (Chondrichthyes, Holocephali). Anat Rec 299:118–131CrossRefGoogle Scholar
  46. Fraser GJ, Smith MM (2011) Evolution of developmental pattern for vertebrate dentitions: an oro-pharyngeal specific mechanism. J Exp Zool B Mol Dev Evol 316B:99–112PubMedCrossRefGoogle Scholar
  47. Fraser GJ, Berkovitz BK, Graham A, Smith MM (2006) Gene deployment for tooth replacement in the rainbow trout (Oncorhynchus mykiss): a developmental model for evolution of the osteichthyan dentition. Evol Dev 8:446–457PubMedCrossRefGoogle Scholar
  48. Fraser GJ, Hulsey CD, Bloomquist RF, Uyesugi K, Manley NR, Streelman JT (2009) An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol 7(2):e31PubMedCrossRefGoogle Scholar
  49. Fraser GJ, Cerny R, Soukup V, Bronner-Fraser M, Streelman JT (2010) The odontode explosion: The origin of tooth-like structures in vertebrates. BioEssays 32:808–817PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fraser GJ, Britz R, Hall A, Johanson Z, Smith MM (2012) Replacing the first-generation dentition in pufferfish with a unique beak. Proc Natl Acad Sci 109:8179–8184PubMedCrossRefGoogle Scholar
  51. Friedman M, Sallan LC (2012) Five hundred million years of extinction and recovery: A Phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology 55:707–742CrossRefGoogle Scholar
  52. Gagnier P-Y, Wilson MVH (1996) Early Devonian acanthodians from northern Canada. Palaeontology 39:241–258Google Scholar
  53. Gardiner JM, Hueter RE, Maruska KP et al (2012) Sensory physiology and behavior of elasmobranchs. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives, 2nd edn. CRC Press, Boca Raton, Florida, pp 349–401CrossRefGoogle Scholar
  54. Gee H (2007) Before the Backbone. Springer, Berlin, p 346Google Scholar
  55. Gess RW, Coates MI (2015) High-latitude chondrichthyans from the Late Devonian (Famennian) Witpoort formation of South Africa. Paläontol Z 89:147–169.  https://doi.org/10.1007/s12542–014-0221-9 CrossRefGoogle Scholar
  56. Ginter M, Hampe O, Duffin CS (2010) Paleozoic Elasmobranchii: Teeth. In: Schultze H-P (ed) Handbook of palaeoichthyology, vol 3D. Verlag Dr. Friedrich Pfeil, München, pp 1–168Google Scholar
  57. Grogan E, Lund R (2004) The origin and relationships of early Chondrichthyes. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, Boca Raton, pp 3–31Google Scholar
  58. Grogan E, Lund R (2009) Two new iniopterygians (Chondrichthyes) from the Mississippian (Serpukhovian) Bear Gulch Limestone of Montana with evidence of a new form of chondrichthyan neurocranium. Acta Zool 90:134–151CrossRefGoogle Scholar
  59. Gruber SH (1977) The visual system of sharks; adaptations and capability. Am Zool 17:453–469CrossRefGoogle Scholar
  60. Guinot G, Cavin L (2015) Contrasting “fish” diversity dynamics between marine and freshwater environments. Curr Biol 25:2314–2318PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hanke G, Wilson M (2010) The putative stem-group chondrichthyans Kathemacanthus and Seretolepis from the Lower Devonian MOTH locality, Mackenzie Mountains, Canada. Morphology, phylogeny and paleobiogeography of fossil fishes. Verlag Dr. Friedrich Pfeil, Munich, pp 159–182Google Scholar
  62. Hara TJ (ed) (1992) Fish chemoreception. Springer, DordrechtGoogle Scholar
  63. Hart NS, Lisney TJ, Marshall NJ, Collin SP (2004) Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch. J Exp Biol 207:4587–4594PubMedCrossRefPubMedCentralGoogle Scholar
  64. Hart NS, Theiss SM, Harahush BK, Collin SP (2011) Microspectrophotometric evidence for cone monochromacy in sharks. Naturwissenschaften 98:193–201PubMedCrossRefPubMedCentralGoogle Scholar
  65. Heidtke UHJ, Krätschmer K (2001) Gladbachus adentatus nov. gen et sp., ein primitiver Hai aus dem Oberen Givetium (Obers Mitteldevon) der Bergische Gladbach-Paffrath-Mulde (Rheinisches Schiefergebirge). Mainz Geowissen Mitteil 30:105–122Google Scholar
  66. Heupel MR, Simpendorfer CA, Hueter RE (2003) Running before the storm: blacktip sharks respond to falling barometric pressure associated with Tropical Storm Gabrielle. J Fish Biol 63:1357–1363CrossRefGoogle Scholar
  67. Holmes WM, Cotton R, Xuan VB et al (2011) Three-dimensional structure of the nasal passageway of a hagfish and its implications for olfaction. Anat Rec 294:1045–1056CrossRefGoogle Scholar
  68. House EL, Pansky B (1960) A functional approach to neuroanatomy. Acad Med 35(11):1067–1068Google Scholar
  69. Howard LE, Holmes WM, Ferrando S et al (2013) Functional nasal morphology of chimaerid fishes. J Morphol 274:987–1009PubMedCrossRefPubMedCentralGoogle Scholar
  70. Huber DR, Dean MN, Summers AP (2008) Hard prey, soft jaws and the ontogeny of feeding mechanics in the spotted ratfish Hydrolagus colliei. J R Soc Interface 5:941–953PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hughes GM, Ballantijn CM (1965) The muscular basis of the respiratory pumps in the dogfish (Scyliorhynus canicula). J Exp Biol 43:363–383Google Scholar
  72. Hunt DM, Carvalho LS, Cowing JA, Davies WL (2009) Evolution and spectral tuning of visual pigments in birds and mammals. Philos Trans R Soc B 364:2941–2955CrossRefGoogle Scholar
  73. Ivanov A, Märss T, Kleesment A (2011) A new elasmobranch Karksiodus mirus gen. et sp. nov. from the Burtnieki Regional Stage, Middle Devonian of Estonia. Estonian J Earth Sci 60:22–30CrossRefGoogle Scholar
  74. Janvier P (1996) Early vertebrates. Oxford monographs on geology and geophysics, vol Vol. 33. Clarendon Press, Oxford, p 393Google Scholar
  75. Janvier P, Pradel A (2015) Elasmobranchs and their extinct relatives: Diversity, relationships, and adaptations through time. Fish Physio 34A:1–17Google Scholar
  76. Janvier P, Suarez-Riglos M (1986) The Silurian and Devonian vertebrates of Bolivia. Bull l’Institut Français d’Etudes Andines 15:73–114Google Scholar
  77. Juarez M, Reyes M, Colman T et al (2013) Characterization of the trunk neural crest in the bamboo shark, Chiloscyllium punctatum. J Comp Neurol 521:3303–3320PubMedCrossRefPubMedCentralGoogle Scholar
  78. Kajiura SM (2001) Head morphology and electrosensory pore distribution of carcharhinid and sphyrnid sharks. Environ Biol Fish 61:125–133CrossRefGoogle Scholar
  79. Kajiura SM, Forni JB, Summers AP (2005) Olfactory morphology of carcharhinid and sphyrnid sharks: Does the cephalofoil confer a sensory advantage? J Morphol 264:253–263PubMedCrossRefPubMedCentralGoogle Scholar
  80. Karatajūtė-Talimaa V, Predtechenskyj N (1995) The distribution of the vertebrates in the Late Ordovician and Early Silurian palaeobasins: Vertebrate microremains from the Lower Silurian of Siberia and Central Asia 105 of the Siberian Platform. Bull Museum Nat d’Hist Natur, Paris, Ser 4(17):39–56Google Scholar
  81. Klug C, Kröger B, Kiessling W et al (2010) The Devonian nekton revolution. Lethaia 43:465–477CrossRefGoogle Scholar
  82. Kotrschal K, Van Staaden MJ, Huber R (1998) Fish brains: evolution and environmental relationships. Rev Fish Biol Fish 8:373–408CrossRefGoogle Scholar
  83. Lammens EHRR, Geursen J, McGillavry PJ (1987) Diet shifts, feeding efficiency and coexistence of bream (Abramis brama), roach (Rutilus rutilus) and white bream (Blicca bjoerkna) in eutrophicated lakes. Proc V Congr Europ Ichtyol, Stockholm 153–162Google Scholar
  84. Lane JA, Maisey JG (2012) The visceral skeleton and jaw suspension in the durophagous hybodontid shark Tribodus limae from the Lower Cretaceous of Brazil. J Paleontol 86:886–905CrossRefGoogle Scholar
  85. Lipovsek M, Ledderose J, Butts T et al (2017) The emergence of mesencephalic trigeminal neurons. Neural Dev 12:11PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lisney TJ (2010) A review of the sensory biology of chimaeroid fishes (Chondrichthyes; Holocephali). Rev Fish Biol Fisheries 20:571–590CrossRefGoogle Scholar
  87. Lisney T, Collin S (2006) Brain morphology in large pelagic fishes: a comparison between sharks and teleosts. J Fish Biol 68:532–554CrossRefGoogle Scholar
  88. Lisney TJ, Collin SP (2007) Relative eye size in elasmobranchs. Brain Behav Evol 69:266–279PubMedCrossRefPubMedCentralGoogle Scholar
  89. Lisney TJ, Yopak KE, Montgomery JC, Collin SP (2008) Variation in brain organization and cerebellar foliation in chondrichthyans: batoids. Brain Behav Evol 72:262–282PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lisney TJ, Theiss SM, Collin SP, Hart NS (2012) Vision in elasmobranchs and their relatives: 21st century advances. J Fish Biol 80:2024–2054PubMedCrossRefPubMedCentralGoogle Scholar
  91. Locket NA (1977) Adaptations to the deep–sea environment. In: Cresitelli F (ed) Handbook of sensory physiology, vol Vol. VII. Springer–Verlag, Berlin, pp 67–192Google Scholar
  92. Long JA, Burrow CJ, Ginter M (2015) First shark from the Late Devonian (Frasnian) Gogo Formation, Western Australia sheds new light on the development of tessellated calcified cartilage. PLoS One 10(5):e0126066PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lowenstein O, Roberts TDM (1951) The localization and analysis of the responses to vibration from the isolated elasmobranch labyrinth. A contribution to the problem of the evolution of hearing in vertebrates. J Physiol 114:471–489PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lund R, Grogan E (2004) Five new euchondrocephalan Chondrichthyes from the Bear Gulch Limestone (Serpukhovian, Namurian E2b) of Montana, USA. In: Arratia G, Wilson MVH, Cloutier R (eds) Recent advances in the origin and early radiation of vertebrates. Verlag Dr Pfeil, München, pp 505–531Google Scholar
  95. Mader H (1986) Schuppen und Zähne von Acanthodien und Elasmobranchiern aus dem Unter-Devon Spaniens (Pisces). Gött Arbeit Geol Paläont 28:1–59Google Scholar
  96. Maisey JG (1980) An evaluation of jaw suspension in sharks. Am Mus Novit 2706:1–17Google Scholar
  97. Maisey JG (1984) Studies on the Paleozoic selachian genus Ctenacanthus Agassiz. No. 3, Nominal species referred to Ctenacanthus. Am Mus Novit 2774:1–20Google Scholar
  98. Maisey JG (1989) Visceral skeleton and musculature of a Late Devonian shark. J Vert Paleo 9:174–190CrossRefGoogle Scholar
  99. Maisey JG (2001) A primitive chondrichthyan braincase from the Middle Devonian of Bolivia. In: Ahlberg PE (ed) Major events in early vertebrate evolution: paleontology, phylogeny, genetics, and development. Taylor and Francis, New York, pp 263–288Google Scholar
  100. Maisey JG (2005) Braincase of the Upper Devonian shark Cladodoides wildungensis (Chondrichthyes, Elasmobranchii), with observations on the braincase in early chondrichthyans. Bull Am Mus Nat Hist 288:1–103CrossRefGoogle Scholar
  101. Maisey JG (2007) The braincase in Paleozoic symmoriiform and cladoselachian sharks. Bull Am Mus Nat Hist 307:1–122CrossRefGoogle Scholar
  102. Maisey JG (2008) The postorbital palatoquadrate articulation in elasmobranchs. J Morphol 269:1022–1040PubMedCrossRefPubMedCentralGoogle Scholar
  103. Maisey JG (2012) What is an ‘elasmobranch’? The impact of palaeontology in understanding elasmobranch phylogeny and evolution. J Fish Biol 80:918–951PubMedCrossRefPubMedCentralGoogle Scholar
  104. Maisey JG, Anderson ME (2001) A primitive chondrichthyan braincase from the early Devonian of South Africa. J Vert Paleo 21:4702–4713Google Scholar
  105. Maisey JG, Miller RF, Turner S (2009) The braincase of the chondrichthyan Doliodus from the Lower Devonian Campbellton Formation of New Brunswick, Canada. Acta Zool 90:109–122CrossRefGoogle Scholar
  106. Maisey JG, Turner S, Naylor GJP, Miller RF (2014) Dental patterning in the earliest sharks: implications for tooth evolution. J Morphol 275:586–596PubMedPubMedCentralGoogle Scholar
  107. Maisey JG, Miller R, Pradel A, Denton JSS, Bronson A, Janvier P (2017) Pectoral morphology in Doliodus: Bridging the ‘acanthodian’-chondrichthyan divide. Am Mus Novit 3875:1–15CrossRefGoogle Scholar
  108. Mallatt J (1997) Shark pharyngeal muscles and early vertebrate evolution. Acta Zool 78:279–294CrossRefGoogle Scholar
  109. Martin KJ, Rasch LJ, Cooper RL, Metscher BD, Johanson Z, Fraser GJ (2016) Sox2+ progenitors in sharks link taste development with the evolution of regenerative teeth from denticles. Proc Natl Acad Sci 113:14769–14774PubMedCrossRefPubMedCentralGoogle Scholar
  110. Maruska KP (2001) Morphology of the mechanosensory lateral line system in elasmobranch fishes: ecological and behavioral considerations. In: Tricas TC, Gruber SH (eds) The behavior and sensory biology of elasmobranch fishes: an anthology in memory of Donald Richard Nelson. Springer Netherlands, Dordrecht, pp 47–75CrossRefGoogle Scholar
  111. McComb DM, Tricas TC, Kajiura SM (2009) Enhanced visual fields in hammerhead sharks. J Exp Biol 212:4010–4018PubMedCrossRefPubMedCentralGoogle Scholar
  112. Meng Q, Yin M (1981) A study of the olfactory organ of the shark. Trans Chinese Ichthyol Soc 2:1–24Google Scholar
  113. Mikoleit G (2004) Phylogenetische Systematik der Wirbeltiere, vol 671. Dr Friedrich Pfeil, MunichGoogle Scholar
  114. Miles R (1964) A reinterpretation of the visceral skeleton of Acanthodes. Nature 204:457CrossRefGoogle Scholar
  115. Miles R (1973) Articulated acanthodian fishes from the Old Red Sandstone of England, with a review of the structure and evolution of the acanthodian shoulder-girdle. Bull Brit Mus (Nat Hist) 24:111–213Google Scholar
  116. Miller RF, Cloutier R, Turner S (2003) The oldest articulated chondrichthyan from the Early Devonian period. Nature 425:501–504PubMedCrossRefPubMedCentralGoogle Scholar
  117. Miyake T, McEachran JD, Hall BK (1992) Edgeworth’s legacy of cranial muscle development with an analysis of muscles in the ventral gill arch region of batoid fishes (Chondrichthyes: Batoidea). J Morphol 212:213–256PubMedCrossRefPubMedCentralGoogle Scholar
  118. Motta PJ, Huber DR (2012) Prey capture behavior and feeding mechanics of Elasmobranchs. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives, 2nd edn. Taylor & Francis, Boca Raton, pp 153–209CrossRefGoogle Scholar
  119. Myrberg AA (2001) The acoustical biology of elasmobranchs. Environ Biol Fish 60:31–46CrossRefGoogle Scholar
  120. Nelson DR (1967) Hearing thresholds, frequency discrimination, and acoustic orientation in the Lemon Shark, Negaprion Brevirostris (Poey). Bull Mar Sci 17:741–768Google Scholar
  121. Nelson GJ (1969) Gill arches and the phylogeny of fishes, with notes on the classification of vertebrates. Bull Amer Mus Nat Hist 141:475–552Google Scholar
  122. New JG (2001) Comparative neurobiology of the elasmobranch cerebellum: Theme and variations on a sensorimotor interface. Environ Biol Fish 60:93–108CrossRefGoogle Scholar
  123. Northcutt RG (1978) Brain organization in the cartilaginous fishes. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates and rays. Office of Naval Research, Arlington, pp 117–193Google Scholar
  124. Northcutt RG (1979) Central projections of the eight cranial nerve in lampreys. Brain Res 167:163–167PubMedCrossRefGoogle Scholar
  125. Northcutt RG (2004) Taste Buds: development and evolution. Brain Behav Evol 64:198–206PubMedCrossRefGoogle Scholar
  126. Nosal AP, Chao Y, Farrara JD, Chai F, Hastings PA (2016) Olfaction contributes to pelagic navigation in a coastal shark. PLoS One 11:e0143758PubMedPubMedCentralCrossRefGoogle Scholar
  127. O’Neill P, McCole RB, Baker CVH (2007) A molecular analysis of neurogenic placode and cranial sensory ganglion development in the shark, Scyliorhinus canicula. Dev Biol 304:156–181PubMedCrossRefPubMedCentralGoogle Scholar
  128. Ollivier FJ, Samuelson DA, Brooks DE, Lewis PA, Kallberg ME, Komaromy AM (2004) Comparative morphology of the tapetum lucidum (among selected species). Vet Ophthalmol 7:11–22PubMedCrossRefPubMedCentralGoogle Scholar
  129. Ørvig T (1951) Histologic studies of ostracoderms, placoderms and fossil elasmobranchs 1. The endoskeleton, with remarks on the hard tissues of lower vertebrates in general. Ark Zool 2:321–454Google Scholar
  130. Patterson C (1965) The phylogeny of the chimaeroids. Philos Trans R Soc B 249:101–219CrossRefGoogle Scholar
  131. Pradel A, Maisey JG, Tafforeau P, Janvier P (2009) An enigmatic gnathostome vertebrate skull from the Middle Devonian of Bolivia. Acta Zool 90:123–133CrossRefGoogle Scholar
  132. Pradel A, Tafforeau P, Janvier P (2010) Study of the pectoral girdle and fins of the Late Carboniferous sibyrhynchid iniopterygians (Vertebrata, Chondrichthyes, Iniopterygia) from Kansas and Oklahoma (USA) by means of microtomography, with comments on iniopterygian relationships. Comptes Rendus Palevol 9:377–387CrossRefGoogle Scholar
  133. Pradel A, Tafforeau P, Maisey JG, Janvier P (2011) A new Paleozoic Symmoriiformes (Chondrichthyes) from the Late Carboniferous of Kansas (USA) and cladistic analysis of early chondrichthyans. PLoS One 6(9):e24938PubMedPubMedCentralCrossRefGoogle Scholar
  134. Pradel A, Maisey JG, Tafforeau P, Mapes RH, Mallatt J (2014) A Palaeozoic shark with osteichthyan-like branchial arches. Nature 509:608–611PubMedCrossRefPubMedCentralGoogle Scholar
  135. Rangel BDS, Ciena AP, Wosnick N, De Amorim AF, Kfoury JA Jr, Rici REG (2016) Ecomorphology of oral papillae and denticles of Zapteryx brevirostris (Chondrichthyes, Rhinobatidae). Zoomorphology 135:189–195CrossRefGoogle Scholar
  136. Rasch LJ, Martin KJ, Cooper RL, Metscher BD, Underwood CJ, Fraser GJ (2016) An ancient dental gene set governs development and continuous regeneration of teeth in sharks. Dev Biol 415:347–370PubMedCrossRefGoogle Scholar
  137. Reif W-E (1978) Shark dentitions: Morphogenetic processes and evolution. Neues Jarb Geol Palaontol 157:107–115Google Scholar
  138. Reif W (1982) Morphogenesis and function of the squamation in sharks. Neues Jahrb Geol Palaontol Abh 164:172–183Google Scholar
  139. Renz AJ, Meyer A, Kuraku S (2013) Revealing less derived nature of cartilaginous fish genomes with their evolutionary time scale inferred with nuclear genes. PLoS One 8(6):e66400PubMedPubMedCentralCrossRefGoogle Scholar
  140. Ryll B, Sanchez S, Haitina T, Tafforeau P, Ahlberg PE (2014) The genome of Callorhinchus and the fossil record: a new perspective on SCPP gene evolution in gnathostomes. Evol Dev 16:123–124PubMedPubMedCentralCrossRefGoogle Scholar
  141. Sallan LS, Coates MI (2010) End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. Proc Natl Acad Sci U S A 107:10131–10135PubMedPubMedCentralCrossRefGoogle Scholar
  142. Sallan LS, Kammer TW, Ausich WI, Cook LA (2011) Persistent predator–prey dynamics revealed by mass extinction. Proc Natl Acad Sci 108:8335–8338PubMedCrossRefPubMedCentralGoogle Scholar
  143. Sansom IJ, Smith MM, Smith MP (2001) The Ordovicianradiation of vertebrates. In: Ahlberg PE (ed) Major events in early vertebrate evolution. Taylor & Francis, London, pp 156–171Google Scholar
  144. Sansom IJ, Wang N-Z, Smith MM (2005) The histology and affinities of sinacanthid fishes: Primitive gnathostomes from the Silurian of China. Zool J Linnean Soc 144:379–386CrossRefGoogle Scholar
  145. Schluessel V, Rick IP, Plischke K (2014) No rainbow for grey bamboo sharks: evidence for the absence of colour vision in sharks from behavioural discrimination experiments. J Comp Phys A 200:939–947CrossRefGoogle Scholar
  146. Sepkoski JJ (1984) A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246–247CrossRefGoogle Scholar
  147. Smith MM, Sansom I (1997) Exoskeletal microremains of an Ordovician fish from the Harding Sandstone of Colorado. Palaeontology 40:645–658Google Scholar
  148. Smith MM, Fraser GJ, Chaplin N, Hobbs C, Graham A (2009) Reiterative pattern of sonic hedgehog expression in the catshark dentition reveals a phylogenetic template for jawed vertebrates. Proc Biol Sci 276:1225–1233PubMedPubMedCentralCrossRefGoogle Scholar
  149. Smith MM, Fraser GJ, Johanson Z (2016) Origin of teeth in jawed vertebrates. Infocus Proc Roy Microscop Soc 42:4–17Google Scholar
  150. Stahl BJ (1980) Non-autostylic Pennsylvanian iniopterygian fishes. Palaeontology 23:315–324Google Scholar
  151. Stahl BJ (1999) Handbook of paleoichthyology. In: Chondrichthyes III. Holocephali, vol 4. Verlag Dr Friedrich Pfeil, MünchenGoogle Scholar
  152. Stensiö EA (1963) Anatomical studies on the arthrodiran head. Kungl Sven Vetenskap Handl 9:1–419Google Scholar
  153. Summers AP, Ferry-Graham LA (2001) Ventilatory modes and mechanics of the hedgehog skate (Leucoraja erinacea): testing the continuous flow model. J Exp Biol 204:1577–1587PubMedGoogle Scholar
  154. Tester AL, Kendall JI (1969) Morphology of the lateralis canal system in shark genus Charcharhinus. Pacific Sci 23:1–16Google Scholar
  155. Theisen B, Zeiske E, Breucker H (1986) Functional morphology of the olfactory organs in the spiny dogfish (Squalus acanthius L.) and the small-spotted catshark (Scyliorhinus canicula (L.)). Acta Zool 67:73–86CrossRefGoogle Scholar
  156. Theiss SM, Lisney TJ, Collin SP, Hart NS (2007) Colour vision and visual ecology of the blue-spotted maskray, Dasyatis kuhlii Müller & Henle, 1814. J Comp Physiol A 193:67–79CrossRefGoogle Scholar
  157. Theiss SM, Hart NS, Collin SP (2009) Morphological Indicators of Olfactory Capability in Wobbegong Sharks (Orectolobidae, Elasmobranchii). Brain Behav Evol 73:91–101PubMedCrossRefGoogle Scholar
  158. Tricas T, Sisneros J (2004) Ecological functions and adaptations of the elasmobranch electrosense. In: von der Emde G, Mogdans J, Kapoor BG (eds) The senses of fish: adaptations for the reception of natural stimuli. Springer, Berlin, pp 308–329CrossRefGoogle Scholar
  159. Underwood CJ, Johanson Z, Welten M et al (2015) Development and evolution of Dentition pattern and tooth order in the skates and rays (Batoidea; Chondrichthyes). PLoS One 10(4):e0122553PubMedPubMedCentralCrossRefGoogle Scholar
  160. Underwood CJ, Johanson Z, Smith MM (2016) Cutting blade dentitions in squaliform sharks form by modification of inherited alternate tooth ordering patterns. Roy Soc Open Sci 3:160385CrossRefGoogle Scholar
  161. Van-eyk SM, Siebeck UE, Champ CM, Marshall J, Hart NS (2011) Behavioural evidence for colour vision in an elasmobranch. J Exp Biol 214:4186–4192PubMedCrossRefPubMedCentralGoogle Scholar
  162. Vogel S (1994) Life in moving fluids, 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  163. Wagner HJ (2002) Sensory brain areas in three families of deep-sea fish (slickheads, eels and grenadiers): comparison of mesopelagic and demersal species. Mar Biol 141:807–817CrossRefGoogle Scholar
  164. Walker WF, Homberger DG (1992) Vertebrate dissection. Saunders College Publishing, OrlandoGoogle Scholar
  165. Wilga CD (2005) Morphology and evolution of the jaw suspension in lamniform shark. J Morphol 265:102–119PubMedCrossRefPubMedCentralGoogle Scholar
  166. Wilga CD, Ferry LA (2016) Functional anatomy and biomechanics of feeding in elasmobranchs. In: Shadwick RE, Farrell AP, Brauner CJ (eds) Physiology of elasmobranch fishes. Academic Press, Cambridge, pp 153–187Google Scholar
  167. Wilga CD, Hueter RE, Wainwright PC, Motta PJ (2001) Evolution of upper jaw protrusion mechanisms in elasmobranchs. Am Zool 41:1248–1257Google Scholar
  168. Williams ME (1998) A new specimen of Tamiobatis vetustus (Chondrichthyes, Ctenacanthoidea) from the Late Devonian Cleveland Shale of Ohio. J Vert Paleo 18:251–260CrossRefGoogle Scholar
  169. Williams ME (2001) Tooth retention in cladodont sharks: with a comparison between primitive grasping and swallowing, and modern cutting and gouging feeding mechanisms. J Vert Paleo 21:214–226CrossRefGoogle Scholar
  170. Wilson MVH, Hanke GF, Märss T (2007) Paired fins of jawless vertebrates and their homologies across the “agnathan”-gnathostome transition. In: Anderson JS, Sues H-D (eds) Major transitions in vertebrate evolution. Indiana University Press, Bloomington, pp 122–149Google Scholar
  171. Yopak KE (2012) Neuroecology of cartilaginous fishes: the functional implications of brain scaling. J Fish Biol 80:1968–2023PubMedCrossRefPubMedCentralGoogle Scholar
  172. Yopak KE, Frank LR (2009) Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging. Brain Behav Evol 74:121–142PubMedCrossRefPubMedCentralGoogle Scholar
  173. Yopak KE, Montgomery JC (2008) Brain organization and specialization in deep-sea chondrichthyans. Brain Behav Evol 71:287–304PubMedCrossRefPubMedCentralGoogle Scholar
  174. Yopak KE, Lisney TJ, Collin SP, Montgomery JC (2007) Variation in brain organization and cerebellar foliation in chondrichthyans: sharks and holocephalans. Brain Behav Evol 69:280–300PubMedCrossRefPubMedCentralGoogle Scholar
  175. Yopak KE, Lisney TJ, Darlington RB, Collin SP, Montgomery JC, Finlay JC (2010) A conserved pattern of brain scaling from sharks to primates. Proc Natl Acad Sci 107:12946–12951PubMedCrossRefPubMedCentralGoogle Scholar
  176. Yopak KE, Lisney TJ, Darlington RB, Collin SP (2015) Not all sharks are “swimming noses”: variation in olfactory bulb size in cartilaginous fishes. Brain Struct Funct 220:1127–1143PubMedCrossRefPubMedCentralGoogle Scholar
  177. Zangerl R, Case GR (1973) Iniopterygia: a new order of chondrichthyan fishes from the Pennsylvanian of North America. Fieldiana Geol Mem 6:1–67Google Scholar
  178. Zhu M, Zhao W, Jia L, Lu J, Qiao T, Qu Q (2009) The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 458:469–474PubMedCrossRefPubMedCentralGoogle Scholar
  179. Zhu M, Yu XB, Choo B, Wang JQ, Jia LT (2012) An antiarch placoderm shows that pelvic girdles arose at the root of jawed vertebrates. Biol Lett 8(3):453–456PubMedPubMedCentralCrossRefGoogle Scholar
  180. Zhu M, Yu X, Ahlberg PE et al (2013) A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502:188–194PubMedCrossRefPubMedCentralGoogle Scholar
  181. Zhu M, Ahlberg PE, Pan Z et al (2016) A Silurian maxillate placoderm illuminates jaw evolution. Science 354:334–336PubMedCrossRefPubMedCentralGoogle Scholar
  182. Ziermann JM, Miyashita T, Diogo R (2014) Cephalic muscles of Cyclostomes (hagfishes and lampreys) and Chondrichthyes (sharks, rays and holocephalans): comparative anatomy and early evolution of the vertebrate head muscles. ZJLS 172:771–802Google Scholar
  183. Ziermann JM, Freitas R, Diogo R (2017) Muscle development in the shark Scyliorhinus canicula: implications for the evolution of the gnathostome head and paired appendage musculature. Front Zool 14:31PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Catherine A. Boisvert
    • 1
  • Peter Johnston
    • 2
  • Kate Trinajstic
    • 1
  • Zerina Johanson
    • 3
    Email author
  1. 1.School of Molecular and Life SciencesCurtin UniversityBentleyAustralia
  2. 2.Department of Anatomy and Medical ImagingUniversity of AucklandAucklandNew Zealand
  3. 3.Department of Earth SciencesNatural History MuseumLondonUK

Personalised recommendations