Evolution of Chordate Cardiopharyngeal Muscles and the Origin of Vertebrate Head Muscles

  • Janine M. Ziermann
  • Rui DiogoEmail author
Part of the Fascinating Life Sciences book series (FLS)


Recent findings that urochordates are the closest sister group of vertebrates have dramatically changed our understanding of chordate evolution and of the origin of the vertebrate head and its muscles. To better understand the evolution and diversity of chordates, in particular the morphological and taxonomical diversity of the vertebrates, it is crucial to investigate the origin, development, and comparative anatomy of not only hard tissues but also of soft tissues such as muscles. Building on the recent discovery of the cardiopharyngeal field in urochordates and on the comparative anatomy of chordate and vertebrate muscles, in this chapter we focus on the broader comparative and developmental anatomy of chordate muscles and the origin of vertebrate cephalic muscles.


Cardiopharyngeal field Evo-devo 



We would like to thank all the other members of the First International Meeting on the Evolutionary Developmental Biology of Head-Heart Muscles held in May 2014 at Howard University and in particular among them Michael Levine, Eldad Tzahor, Robert Kelly, Lionel Christiaen, Julia Molnar, and Drew Noden who collaborated with us in the Nature paper that was published as a result of that meeting, and that is a key basis for the present chapter. We are also thankful to numerous other colleagues that have discussed with us subjects related to the issues included in this chapter. Our gratitude goes furthermore to Peter Johnston and Virginia Abdala for reviewing the current chapter.


  1. Ang S-L, Conlon RA, Jin O, Rossant J (1994) Positive and negative signals from mesoderm regulate the expression of mouse Otx2 in ectoderm explants. Development 120:2979–2989PubMedGoogle Scholar
  2. Bone Q (1960) The central nervous system in amphioxus. J Comp Neurol 115:27–64CrossRefGoogle Scholar
  3. Cameron CB (2002) The anatomy, life habits, and later development of a new species of enteropneust, Harrimania planktophilus (Hemichordata: Harrimaniidae) from Barkley Sound. Biol Bull 202:182–191PubMedCrossRefGoogle Scholar
  4. Candiani S (2012) Focus on miRNAs evolution: a perspective from amphioxus. Brief Funct Genomics 11(2):107–117. CrossRefPubMedGoogle Scholar
  5. Caron J-B, Morris SC, Cameron CB (2013) Tubicolous enteropneusts from the Cambrian period. Nature 495:503–506PubMedCrossRefGoogle Scholar
  6. Darwin C (1871) The descent of man, and selection in relation to sex. J Murray, LondonCrossRefGoogle Scholar
  7. Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968PubMedCrossRefPubMedCentralGoogle Scholar
  8. Dennell R (1950) Note on the Feeding of Amphioxus (Branchiostoma bermudœ). P Roy Soc Edinb B 64:229–234Google Scholar
  9. Diogo R, Abdala V (2010) Muscles of vertebrates—comparative anatomy, evolution, homologies and development. CRC Press; Science Publisher, Enfield, New HampshireCrossRefGoogle Scholar
  10. Diogo R, Tanaka EM (2014) Development of fore-and hindlimb muscles in GFP-transgenic axolotls: Morphogenesis, the tetrapod bauplan, and new insights on the Forelimb-Hindlimb Enigma. J Exp Zool Part B 322:106–127CrossRefGoogle Scholar
  11. Diogo R, Ziermann JM (2014) Development of fore- and hindlimb muscles in frogs: Morphogenesis, homeotic transformations, digit reduction, and the forelimb-hindlimb enigma. J Exp Zool Part B 322B:86–105CrossRefGoogle Scholar
  12. Diogo R, Ziermann JM (2015) Development, metamorphosis, morphology, and diversity: The evolution of chordate muscles and the origin of vertebrates. Dev Dyn 244:1046–1057PubMedCrossRefPubMedCentralGoogle Scholar
  13. Diogo R, Linde-Medina M, Abdala V, Ashley-Ross MA (2013) New, puzzling insights from comparative myological studies on the old and unsolved forelimb/hindlimb enigma. Biol Rev 88:196–214PubMedCrossRefPubMedCentralGoogle Scholar
  14. Diogo R, Kelly RG, Christiaen L et al (2015) A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 520:466–473PubMedPubMedCentralCrossRefGoogle Scholar
  15. Edgeworth FH (1935) The cranial muscles of vertebrates. Cambridge at the University Press, LondonGoogle Scholar
  16. Flood PR (1966) A peculiar mode of muscular innervation in amphioxus. Light and electron microscopic studies of the so-called ventral roots. J Comp Neurol 126:181–217PubMedCrossRefGoogle Scholar
  17. Fritzsch B, Northcutt RG (1993) Cranial and spinal nerve organization in Amphioxus and Lampreys: Evidence for an ancestral craniate pattern. Cells Tissues Organs 148:96–109CrossRefGoogle Scholar
  18. Gans C (1989) Stages in the origin of vertebrates: Analysis by means of scenarios. Biol Rev 64:221–268PubMedCrossRefGoogle Scholar
  19. Gans C, Northcutt RG (1983) Neural crest and the origin of vertebrates: a new head. Science 220:268–274PubMedCrossRefGoogle Scholar
  20. Garcia-Fernàndez J, Holland PWH (1994) Archetypal organization of the amphioxus Hox gen cluster. Nature 370:563–566PubMedCrossRefGoogle Scholar
  21. Garstang W (1928) Memoirs: The morphology of Tunicata, and its bearing on the phylogeny of the Chordata. Q J Micro Sci 2:51–187Google Scholar
  22. Gegenbaur C (1878) Elements of comparative anatomy. Macmillan and Company, New YorkGoogle Scholar
  23. Gill T (1895) The lowest of the vertebrates and their origin. Science:645–649PubMedCrossRefGoogle Scholar
  24. Gillis JA, Dahn RD, Shubin NH (2009) Shared developmental mechanisms pattern the vertebrate gill arch and paired fin skeletons. PNAS 106:5720–5724PubMedCrossRefGoogle Scholar
  25. Gillis JA, Fritzenwanker JH, Lowe CJ (2012) A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network. Proc Roy Soc London B 279:237–246CrossRefGoogle Scholar
  26. Gopalakrishnan S, Comai G, Sambasivan R et al (2015) A cranial mesoderm origin for esophagus striated muscles. Dev Cell 34:694–704PubMedCrossRefPubMedCentralGoogle Scholar
  27. Graham A, Shimeld SM (2013) The origin and evolution of the ectodermal placodes. J Anat 222:32–40PubMedCrossRefGoogle Scholar
  28. Gregory WK (1935) On the evolution of the skulls of vertebrates with special reference to heritable changes in proportional diameters (anisomerism). PNAS 21:1–8PubMedCrossRefGoogle Scholar
  29. Hall BK, Gillis JA (2013) Incremental evolution of the neural crest, neural crest cells and neural crest-derived skeletal tissues. J Anat 222:19–31PubMedCrossRefGoogle Scholar
  30. Holland LZ (2015) Genomics, evolution and development of amphioxus and tunicates: the goldilocks principle. J Exp Zool Part B 324:342–352CrossRefGoogle Scholar
  31. Holland LZ, Holland ND (1998) Developmental gene expression in amphioxus: new insights into the evolutionary origin of vertebrate brain regions, neural crest, and rostrocaudal segmentation. Am Zool 38:647–658CrossRefGoogle Scholar
  32. Holland LZ, Holland ND (2001) Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate? J Anat 199:85–98PubMedPubMedCentralCrossRefGoogle Scholar
  33. Holland ND, Venkatesh TV, Holland LZ, Jacobs DK, Bodmer R (2003) AmphiNk2-tin, an amphioxus homeobox gene expressed in myocardial progenitors: insights into evolution of the vertebrate heart. Dev Biol 255:128–137PubMedCrossRefGoogle Scholar
  34. Holland LZ, Holland ND, Gilland E (2008) Amphioxus and the evolution of head segmentation. Integr Comp Biol 48:630–646PubMedCrossRefGoogle Scholar
  35. Holland ND, Holland LZ, Holland PW (2015) Scenarios for the making of vertebrates. Nature 520:450–455PubMedCrossRefGoogle Scholar
  36. Holmes W (1953) The atrial nervous system of amphioxus (Branchiostoma). Q J Micro Sci 3:523–535Google Scholar
  37. Kaji T, Aizawa S, Uemura M, Yasui K (2001) Establishment of left-right asymmetric innervation in the lancelet oral region. J Comp Neurol 435:394–405PubMedCrossRefGoogle Scholar
  38. Kaji T, Keiji S, Artinger KB, Yasui K (2009) Dynamic modification of oral innervation during metamorphosis in Branchiostoma belcheri, the oriental lancelet. Biol Bull 217:151–160PubMedCrossRefGoogle Scholar
  39. Kaplan N, Razy-Krajka F, Christiaen L (2015) Regulation and evolution of cardiopharyngeal cell identity and behavior: insights from simple chordates. Curr Opin Genet Dev 32:119–128PubMedPubMedCentralCrossRefGoogle Scholar
  40. Knight RD, Mebus K, d'Angelo A et al (2011) Ret signalling integrates a craniofacial muscle module during development. Development 138:2015–2024PubMedCrossRefGoogle Scholar
  41. Köntges G, Lumsden A (1996) Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122:3229–3242PubMedPubMedCentralGoogle Scholar
  42. Koop D, Holland LZ (2008) The basal chordate amphioxus as a simple model for elucidating developmental mechanisms in vertebrates. Birth Def Res C Embryo Today 84:175–187CrossRefGoogle Scholar
  43. Koop D, Chen J, Theodosiou M et al (2014) Roles of retinoic acid and Tbx1/10 in pharyngeal segmentation: amphioxus and the ancestral chordate condition. EvoDevo 5:1CrossRefGoogle Scholar
  44. Kuratani S (1997) Spatial distribution of postotic crest cells defines the head/trunk interface of the vertebrate body: embryological interpretation of peripheral nerve morphology and evolution of the vertebrate head. Anat Embryol 195:1–13PubMedCrossRefGoogle Scholar
  45. Kuratani S, Adachi N, Wada N, Oisi Y, Sugahara F (2013) Developmental and evolutionary significance of the mandibular arch and prechordal/premandibular cranium in vertebrates: revising the heterotopy scenario of gnathostome jaw evolution. J Anat 222:41–55PubMedCrossRefGoogle Scholar
  46. Kusakabe R, Kuraku S, Kuratani S (2011) Expression and interaction of muscle-related genes in the lamprey imply the evolutionary scenario for vertebrate skeletal muscle, in association with the acquisition of the neck and fins. Dev Biol 350:217–227PubMedCrossRefPubMedCentralGoogle Scholar
  47. Lescroart F, Kelly RG, Le Garrec J-F et al (2010) Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo. Development 137:3269–3279PubMedCrossRefPubMedCentralGoogle Scholar
  48. Lescroart F, Hamou W, Francou A et al (2015) Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium. PNAS 112:1446–1451PubMedCrossRefGoogle Scholar
  49. Lowe CJ, Clarke DN, Medeiros DM, Rokhsar DS, Gerhart J (2015) The deuterostome context of chordate origins. Nature 520:456–465PubMedCrossRefGoogle Scholar
  50. Mackenzie S, Walsh FS, Graham A (1998) Migration of hypoglossal myoblast precursors. Dev Dyn 213:349–358PubMedCrossRefGoogle Scholar
  51. Mahadevan NR, Horton AC, Gibson-Brown JJ (2004) Developmental expression of the amphioxus Tbx1/10 gene illuminates the evolution of vertebrate branchial arches and sclerotome. Dev Genes Evol 214:559–566PubMedCrossRefGoogle Scholar
  52. Mallatt J (2008) The origin of the vertebrate jaw: neoclassical ideas versus newer, development-based ideas. Zoo Sci 25:990–998CrossRefGoogle Scholar
  53. Mallatt J, Chen JY (2003) Fossil sister group of craniates: predicted and found. J Morph 258:1–31PubMedCrossRefGoogle Scholar
  54. Marinelli W, Strenger A (1954) Vergleichende Anatomie und Morphologie der Wirbeltiere: von W. Marinelli und A. Strenger. Lampetra fluviatilis (L.). Franz Deuticke, Austria. 80Google Scholar
  55. Matsuoka T, Ahlberg PE, Kessaris N et al (2005) Neural crest origins of the neck and shoulder. Nature 436:347–355PubMedPubMedCentralCrossRefGoogle Scholar
  56. Minchin JE, Williams VC, Hinits Y et al (2013) Oesophageal and sternohyal muscle fibres are novel Pax3-dependent migratory somite derivatives essential for ingestion. Development 140:2972–2984PubMedPubMedCentralCrossRefGoogle Scholar
  57. Minot CS (1897) Cephalic homologies. A contribution to the determination of the ancestry of vertebrates. Am Nat 31:927–943CrossRefGoogle Scholar
  58. Moreno TR, Rocha RM (2008) Phylogeny of the Aplousobranchia (Tunicata: Ascidiacea). Rev Brasil Zool 25:269–298CrossRefGoogle Scholar
  59. Niederreither K, Vermot J, Le Roux I et al (2003) The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development 130:2525–2534PubMedCrossRefGoogle Scholar
  60. Noden DM (1983) The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat 168:257–276PubMedCrossRefGoogle Scholar
  61. Noden DM (1986) Patterning of avian craniofacial muscles. Dev Biol 116:347–356PubMedCrossRefGoogle Scholar
  62. Noden DM, Francis-West P (2006) The differentiation and morphogenesis of craniofacial muscles. Dev Dyn 235:1194–1218PubMedCrossRefPubMedCentralGoogle Scholar
  63. Noden DM, Schneider RA (2006) Neural crest cells and the community of plan for craniofacial development: historical debates and current perspectives. In: Saint-Jeannet J (ed) Neural crest induction and differentiation. Landes Bioscience, San Francisco, pp 1–31Google Scholar
  64. Northcutt RG (2005) The new head hypothesis revisited. J Exp Zool Part B 304:274–297CrossRefGoogle Scholar
  65. Oisi Y, Fujimoto S, Ota KG, Kuratani S (2015) On the peculiar morphology and development of the hypoglossal, glossopharyngeal and vagus nerves and hypobranchial muscles in the hagfish. Zool Lett 1:1CrossRefGoogle Scholar
  66. Piekarski N, Olsson L (2007) Muscular derivatives of the cranialmost somites revealed by long-term fate mapping in the Mexican axolotl (Ambystoma mexicanum). Evol Dev 9:566–578PubMedCrossRefPubMedCentralGoogle Scholar
  67. Piotrowski T, Nüsslein-Volhard C (2000) The endoderm plays an important role in patterning the segmented pharyngeal region in zebrafish (Danio rerio). Dev Biol 225:339–356PubMedCrossRefGoogle Scholar
  68. Presley R, Horder T, Slipka J (1996) Lancelet development as evidence of ancestral chordate structure. Israel J Zool 42:S97–S116Google Scholar
  69. Prunotto C, Crepaldi T, Forni PE et al (2004) Analysis of Mlc-lacZ Met mutants highlights the essential function of Met for migratory precursors of hypaxial muscles and reveals a role for Met in the development of hyoid arch-derived facial muscles. Dev Dyn 231:582–591PubMedCrossRefGoogle Scholar
  70. Putnam NH, Butts T, Ferrier DE et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071PubMedCrossRefGoogle Scholar
  71. Razy-Krajka F, Lam K, Wang W et al (2014) Collier/OLF/EBF-dependent transcriptional dynamics control pharyngeal muscle specification from primed cardiopharyngeal progenitors. Dev Cell 29:263–276PubMedPubMedCentralCrossRefGoogle Scholar
  72. Sambasivan R, Kuratani S, Tajbakhsh S (2011) An eye on the head: the development and evolution of craniofacial muscles. Development 138:2401–2415PubMedCrossRefGoogle Scholar
  73. Sasakura Y, Kanda M, Ikeda T et al (2012) Retinoic acid-driven Hox1 is required in the epidermis for forming the otic/atrial placodes during ascidian metamorphosis. Development 139:2156–2160PubMedCrossRefGoogle Scholar
  74. Sauka-Spengler T, Le Mentec C, Lepage M, Mazan S (2002) Embryonic expression of Tbx1, a DiGeorge syndrome candidate gene, in the lamprey Lampetra fluviatilis. GEP 2:99–103PubMedGoogle Scholar
  75. Schubert M, Yu J-K, Holland ND et al (2005) Retinoic acid signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus. Development 132:61–73PubMedCrossRefGoogle Scholar
  76. Shearman RM, Burke AC (2009) The lateral somitic frontier in ontogeny and phylogeny. J Exp Zool Part B 312:603–612CrossRefGoogle Scholar
  77. Shimeld SM, Holland PW (2000) Vertebrate innovations. PNAS 97:4449–4452PubMedCrossRefGoogle Scholar
  78. Simões-Costa MS, Vasconcelos M, Sampaio AC et al (2005) The evolutionary origin of cardiac chambers. Dev Biol 277:1–15PubMedCrossRefGoogle Scholar
  79. Stokes M, Holland N (1995) Ciliary hovering in larval lancelets (= Amphioxus). Biol Bull 188:231–233PubMedCrossRefGoogle Scholar
  80. Stolfi A, Gainous TB, Young JJ et al (2010) Early chordate origins of the vertebrate second heart field. Science 329:565–568PubMedPubMedCentralCrossRefGoogle Scholar
  81. Tirosh-Finkel L, Elhanany H, Rinon A, Tzahor E (2006) Mesoderm progenitor cells of common origin contribute to the head musculature and the cardiac outflow tract. Development 133:1943–1953PubMedCrossRefGoogle Scholar
  82. Tzahor E (2009) Heart and craniofacial muscle development: a new developmental theme of distinct myogenic fields. Dev Biol 327:273–279PubMedCrossRefGoogle Scholar
  83. Valentine JW (2004) On the origin of phyla. University of Chicago Press, ChicagoGoogle Scholar
  84. Wendling O, Dennefeld C, Chambon P, Mark M (2000) Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches. Development 127:1553–1562PubMedGoogle Scholar
  85. Willey A (1894) Amphioxus and the ancestry of the vertebrates. MacMillan & Co., New YorkCrossRefGoogle Scholar
  86. Yasui K, Kaji T, Morov AR, Yonemura S (2014) Development of oral and branchial muscles in lancelet larvae of Branchiostoma japonicum. J Morph 275:465–477PubMedCrossRefGoogle Scholar
  87. Yoshida K, Nakahata A, Treen N et al (2017) Hox-mediated endodermal identity patterns the pharyngeal muscle formation in the chordate pharynx. Development 44(9):1629–1634. CrossRefGoogle Scholar
  88. Zhu M, Yu X, Ahlberg PE et al (2013) A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502:188–193PubMedCrossRefPubMedCentralGoogle Scholar
  89. Ziermann JM, Diogo R (2013) Cranial muscle development in the model organism Ambystoma mexicanum: implications for tetrapod and vertebrate comparative and evolutionary morphology and notes on ontogeny and phylogeny. Anat Rec 296:1031–1048CrossRefGoogle Scholar
  90. Ziermann JM, Diogo R (2014) Cranial muscle development in frogs with different developmental modes: direct development vs. biphasic development. J Morph 275:398–413PubMedCrossRefGoogle Scholar
  91. Ziermann JM, Miyashita T, Diogo R (2014) Cephalic muscles of cyclostomes (hagfishes and lampreys) and Chondrichthyes (sharks, rays and holocephalans): comparative anatomy and early evolution of the vertebrate head muscles. Zool J Lin Soc 172:771–802CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of AnatomyHoward UniversityWashington, DCUSA

Personalised recommendations