Advertisement

False Data Injection Attacks in Internet of Things

  • Biozid Bostami
  • Mohiuddin AhmedEmail author
  • Salimur Choudhury
Chapter
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

Internet of Things (IoT) facilitates networking among different types of electronic devices. The emerging false data injection attacks (FDIAs) have drawn attention and heavily researched in power systems and smart grid. The cyber criminals compromise a networked device and inject data. However, these attacks on IoT may lead to significant losses and able to disrupt normal activities among the devices in any IoT network. To the best of our knowledge, there is not enough substantial investigation on FDIA in IoT. Therefore, in this chapter, the impact of FDIA is analyzed from IoT perspective and the usefulness of existing FDIA countermeasures is investigated. The key contribution of this chapter is to create a new direction of IoT research on FDIA detection and prevention. The chapter will be beneficial for graduate level students, academicians, and researchers in this application domain.

References

  1. 1.
    Y. Liu, P. Ning, M.K. Reiter, False data injection attacks against state estimation in electric power grids, in Proceedings of the 16th ACM Conference on Computer and Communications Security (CCS’09), Chicago, IL, 9–13 November 2009, 12 ppGoogle Scholar
  2. 2.
    Y. Liu, P. Ning, M.K. Reiter, False data injection attacks against state estimation in electric power grids. ACM Trans. Inf. Syst. Secur. 14(1), Article 13/1–33 (2011)Google Scholar
  3. 3.
    L. Xie, Y.L. Mo, B. Sinopoli, Integrity data attacks in power market operations. IEEE Trans. Smart Grid 2(4), 659–666 (2011)CrossRefGoogle Scholar
  4. 4.
    L.Y. Jia, J. Kim, R.J. Thomas et al., Impact of data quality on real-time locational marginal price. IEEE Trans. Power Syst. 29(2), 627–636 (2014)CrossRefGoogle Scholar
  5. 5.
    D.H. Choi, L. Xie, Impact analysis of locational marginal price subject to power system topology errors, in Proceedings of the 2013 IEEE International Conference on Smart Grid Communications, Vancouver, 21–24 October 2013, pp. 55–60Google Scholar
  6. 6.
    L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, S. Sastry, Foundations of control and estimation over lossy networks. Proc. IEEE 95(1), 163–187 (2007)CrossRefGoogle Scholar
  7. 7.
    S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, Resilient network coding in the presence of byzantine adversaries. Proc. IEEE Trans. Inf. Theory 54(6), 2596–2603 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Ma, Resilience of sink filtering scheme in wireless sensor networks. Comput. Commun. 30(1), 55–65 (2006)CrossRefGoogle Scholar
  9. 9.
    A. Parakh, S. Kak, Space efficient secret sharing for implicit data security. Inf. Sci. 181(2), 335–341 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    F. Ye, H. Luo, L. Zhang, Statistical en-route filtering of injected false data in sensor networks, in Proceedings of 23th Annual Joint Conference of the IEEE Computer and Communications Societies (2004), pp. 2446–2457Google Scholar
  11. 11.
    Z. Su, C. Lin, F.J. Feng, F.Y. Ren, Key management schemes and protocols for wireless sensor networks. J. Softw. 18(5), 1218–1231 (2007)CrossRefGoogle Scholar
  12. 12.
    R. Deng, G. Xiao, R. Lu, H. Liang, A.V. Vasilakos, False data injection on state estimation in power systems-Attacks, impacts, and defense: a survey. IEEE Trans. Ind. Inf. 13(2), 411–423 (2017)CrossRefGoogle Scholar
  13. 13.
    Y. Liu, P. Ning, M.K. Reiter, False data injection attacks against state estimation in electric power grids. ACM Trans. Inf. Syst. Secur. 14(1), Article 13/1–33 (2011)Google Scholar
  14. 14.
    G.Q. Liang, J.H. Zhao, F.J. Luo et al., A review of false data injection attacks against modern power systems. IEEE Trans Smart Grid 8, 1630–1638 (2016)CrossRefGoogle Scholar
  15. 15.
    J.W. Liang, L. Sankar, O. Kosut, Vulnerability analysis and consequences of false data injection attack on power system state estimation. IEEE Trans. Power Syst. 31, 3864–3872 (2016)CrossRefGoogle Scholar
  16. 16.
    G. Hug, J.A. Giampapa, Vulnerability assessment of AC state estimation with respect to false data injection cyber-attacks. IEEE Trans. Smart Grid 3(3), 1362–1370 (2012)CrossRefGoogle Scholar
  17. 17.
    L. Xie, Y.L. Mo, B. Sinopoli, Integrity data attacks in power market operations. IEEE Trans. Smart Grid 2(4), 659–666 (2011)CrossRefGoogle Scholar
  18. 18.
    L.Y. Jia, J. Kim, R.J. Thomas et al., Impact of data quality on real-time locational marginal price. IEEE Trans. Power Syst. 29(2), 627–636 (2014)CrossRefGoogle Scholar
  19. 19.
    D.H. Choi, L. Xie, Impact analysis of locational marginal price subject to power system topology errors. In: Proceedings of the 2013 IEEE International Conference on Smart Grid Communications, Vancouver, 21–24 October 2013, pp. 55–60Google Scholar
  20. 20.
    Y.L. Yuan, Z.Y. Li, K. Ren, Modeling load redistribution attacks in power systems. IEEE Trans. Smart Grid 2(2), 382–390 (2011)CrossRefGoogle Scholar
  21. 21.
    Y.L. Yuan, Z.Y. Li, K. Ren, Quantitative analysis of load redistribution attacks in power systems. IEEE Trans. Parallel Distrib. Syst. 23(9), 1731–1738 (2012)CrossRefGoogle Scholar
  22. 22.
    F. Ye, H. Luo, L. Zhang, Statistical en-route filtering of injected false data in sensor networks, in Proceedings of 23th Annual Joint Conference of the IEEE Computer and Communications Societies (2004), pp. 2446–2457Google Scholar
  23. 23.
    E. Ayday, F. Delgosha, F. Fekri, Location-aware security services for wireless sensor networks using network coding, in IEEE Conference on Computer Communications (2007), pp. 1226–1234Google Scholar
  24. 24.
    K. Ren, W. Lou, Y. Zhang, Providing location-aware end-to-end data security in wireless sensor networks, in Proceedings of the IEEE Conference on Computing and Communicating (2006), pp. 585–598Google Scholar
  25. 25.
    H. Wang, Q. Li, PDF: a public-key based false data filtering scheme in sensor networks, in Proceedings of the International Conference on Wireless Algorithms, Systems and Applications (2007), pp. 129–138Google Scholar
  26. 26.
    Y. Zhang, J. Yang, H. Vu, The interleaved authentication for filtering false reports in multipath routing based sensor networks, in Proceedings of 20th International Parallel and Distributed Processing Symposium (2006), pp. 1–10Google Scholar
  27. 27.
    S. Zhu, S. Setia, S. Jajodia, An interleaved hop-by-hop authentication scheme for filtering of injected false data in sensor networks, in Proceeding IEEE Symposium on Security and Privacy (2004), pp. 259–271Google Scholar
  28. 28.
    L. Zhou, C. Ravishankar, A fault localized scheme for false report filtering in sensor networks, in Proceedings of the IEEE International Conference on Pervasive Services (2005), pp. 59–68Google Scholar
  29. 29.
    J.X. Wang, Z.X. Liu, S.G. Zhang, X. Zhang, Defending collaborative false data injection attacks in wireless sensor networks. Inf. Sci. 254, 39–53 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    R.X. Lu, X.D. Lin, H.J. Zhu, X.H. Liang, X.M. Shen, BECAN: a bandwidth-efficient cooperative authentication scheme for filtering injected false data in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 23(1), 32–43 (2012)CrossRefGoogle Scholar
  31. 31.
    X.Y. Yang, J. Lin, P. Moulema, W. Yu, X.W. Fu, W. Zhao, A novel en-route filtering scheme against false data injection attacks in cyber-physical networked systems, in Proceedings of the IEEE International Conference on Distributed Computing Systems (ICDCS) (2012), pp. 92–101Google Scholar
  32. 32.
    F. Yang, X.H. Zhou, Q.Y. Zhang, Multi-dimensional resilient statistical en-route filtering in wireless sensor networks, in Advances in Grid and Pervasive Computing. Lecture Notes in Computer Science (Springer, Berlin, 2010), pp. 130–139Google Scholar
  33. 33.
    Z. Yu, Y. Guan, A dynamic en-route scheme for filtering false data injection in wireless sensor networks, in Proceedings of 25th Annual Joint Conference of the IEEE Computer and Communications Societies (2006), pp. 1–12Google Scholar
  34. 34.
    S. Cui, Z. Han, S. Kar, T.T. Kim, H. Poor, A. Tajer, Coordinated data-injection attack and detection in the smart grid: a detailed look at enriching detection solutions. IEEE Signal Process. Mag. 29(5), 106–115 (2012)CrossRefGoogle Scholar
  35. 35.
    M.G. Kallitsis, S. Bhattacharya, S. Stoev, G. Michailidis, Adaptive statistical detection of false data injection attacks in smart grids, in 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (2016), pp. 826–830Google Scholar
  36. 36.
    J. Chen, A. Abur, Placement of PMUs to enable bad data detection in state estimation. IEEE Trans. Power Syst. 21(4), 1608–1615 (2006)CrossRefGoogle Scholar
  37. 37.
    T.T. Kim, H.V. Poor, Strategic protection against data injection attacks on power grids. IEEE Trans. Smart Grid 2(2), 326–333 (2011)CrossRefGoogle Scholar
  38. 38.
    S. Gong, Z. Zhang, H. Li, A.D. Dimitrovski, Time stamp attack in smart grid: physical mechanism and damage analysis, preprint (2012), http://arxiv.org/abs/1201.2578 Google Scholar
  39. 39.
    X. Liu, Z. Li, Z. Li, Impacts of bad data on the PMU based line outage detection, Preprint (2015), http://arxiv.org/abs/1502.04236
  40. 40.
    M. Talebi, C. Li, Z. Qu, Enhanced protection against false data injection by dynamically changing information structure of microgrids, in IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM) (2012), pp. 393–396Google Scholar
  41. 41.
    Y. Huang, H. Li, K.A. Campbell, Z. Han, Defending false data injection attack on smart grid network using adaptive CUSUM test, in IEEE 45th Annual Conference on Information Sciences and Systems (CISS) (2011), pp. 1–6Google Scholar
  42. 42.
    S. Zhu, S. Setia, S. Jajodia, P. Ning, An interleaved hop-by-hop authentication scheme for filtering of injected false data in sensor networks, in Proceedings of IEEE Symposium on Security and Privacy, Oakland, CA (2004), pp. 259–271Google Scholar
  43. 43.
    L. Liu, M. Esmalifalak, Q. Ding, V.A. Emesih, Z. Han Detecting false data injection attacks on power grid by sparse optimization. IEEE Trans. Smart Grid 5(2), 612–621 (2014)CrossRefGoogle Scholar
  44. 44.
    G. Chaojun, P. Jirutitijaroen, M. Motani, Detecting false data injection attacks in AC state estimation. IEEE Trans. Smart Grid 6, 2476–2483 (2015)CrossRefGoogle Scholar
  45. 45.
    S. Bi, Y.J. Zhang, Defending mechanisms against false-data injection attacks in the power system state estimation, in Proceedings of IEEE GLOBECOM Workshops (GC Wkshps) (2011), pp. 1162–1167Google Scholar
  46. 46.
    S. Bi, Y.J. Zhang, Graphical methods for defense against false-data injection attacks on power system state estimation. IEEE Trans. Smart Grid 5(3), 1216–1227 (2014)CrossRefGoogle Scholar
  47. 47.
    W. Yu, D. Griffith, L. Ge, S. Bhattarai, N. Golmie, An integrated detection system against false data injection attacks in the smart grid. Secur. Commun. Netw. 8, 91–109 (2015).  https://doi.org/10.1002/sec.957 CrossRefGoogle Scholar
  48. 48.
    I. Kamel, H. Juma, Simplified watermarking scheme for sensor networks. Int. J. Internet Protoc. Technol. 5(1), 101–111 (2010)CrossRefGoogle Scholar
  49. 49.
    S. Agrawal, D. Vieira, A survey on internet of things: security and privacy issues. Abakós 1, 78–95 (2013)CrossRefGoogle Scholar
  50. 50.
    D. Blaauw, D. Sylvester, P. Dutta, Y. Lee, I. Lee, S. Bang, Y. Kim, G. Kim, P. Pannuto, Y.-S. Kuo, D. Yoon, W. Jung, Z. Foo, Y.-P. Chen, S. Oh, S. Jeong, M. Choi, IoT design space challenges: circuits and systems, in 2014 Symposium on VLSI Technology (VLSITechnology): Digest of Technical Papers (2014), pp. 1–2Google Scholar
  51. 51.
    L. Ting, L. Yang, S. Yao, M. Yashan, G. Xiaohong, A dynamic secret-based encryption method in smart grids wireless communication. IEEE Trans. Smart Grid 5, 1175–1182 (2013)Google Scholar
  52. 52.
    S. Li, Y. Yilmaz, X. Wang, Quickest detection of false data injection attack in wide-area smart grids. IEEE Trans. Smart Grid 6(6), 2725–2735 (2015)CrossRefGoogle Scholar
  53. 53.
    J. Valenzuela, J. Wang, N. Bissinger, Real-time intrusion detection in power system operations. IEEE Trans. Power Syst. 28(2), 1052–1062 (2013)CrossRefGoogle Scholar
  54. 54.
    O. Kosut, L. Jia, R.J. Thomas, L. Tong, Malicious data attacks on the smart grid. IEEE Trans. Smart Grid 2(4), 645–658 (2011)CrossRefGoogle Scholar
  55. 55.
    J. Landford et al., Fast sequence component analysis for attack detection in synchrophasor networks, in Proceedings of 5th International Conference on Smart Cities Green ICT Systems (SmartGreens), Rome (2016), p. 268Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Biozid Bostami
    • 1
  • Mohiuddin Ahmed
    • 2
    Email author
  • Salimur Choudhury
    • 3
  1. 1.Department of Computer Science and EngineeringIslamic University of TechnologyGazipurBangladesh
  2. 2.Centre for Cyber Security and GamesCanberra Institute of TechnologyREIDAustralia
  3. 3.Department of Computer ScienceLakehead UniversityThunder BayCanada

Personalised recommendations