Advertisement

Metabolic Surgery, Reality or Myth: Scientific Side of Obesity Pathophysiology and Management

  • Emma Rose McGlone
  • Ahmed R. Ahmed
Chapter

Abstract

Etymologically, the term ‘bariatric surgery’ means surgery to reduce weight, deriving from the Greek ‘baros’ (heavy). It is clear however that most bariatric operations have dramatic effects on type 2 diabetes mellitus and other metabolic conditions, many of which occur independently of weight loss. Weight loss may be regarded as just one of several clinical outcomes that result from the systemic changes in nutrient metabolism conferred by operations such as Roux-en-Y gastric bypass (RYGB): hence these operations can be considered examples of ‘metabolic surgery’.

This chapter will outline the existing evidence that bariatric procedures have clinical outcomes independent of weight loss and may therefore be termed ‘metabolic’. It will then outline current understanding of the main mechanisms by which weight loss-independent changes in metabolism are conferred: caloric restriction, gut hormones, bile acids and the gut microbiome (summarised in Fig. 36.1). Finally, it will consider potential limits to the notion that bariatric surgery is purely metabolic.

Keywords

Metabolic surgery Gut hormones Foregut/hindgut hypothesis Incretins/anti-incretins Bile acids Gut microbiome 

References

  1. 1.
    Buchwald H. Metabolic surgery: a brief history and perspective. Surg Obes Relat Dis Elsevier. 2010;6(2):221–2.CrossRefPubMedGoogle Scholar
  2. 2.
    Buchwald H, Stoller DK, Campos CT, Matts JP, Varco RL. Partial ileal bypass for hypercholesterolemia. 20- to 26-year follow-up of the first 57 consecutive cases. Ann Surg. Lippincott, Williams, and Wilkins; 1990;212(3):318–29; discussion 329–31.Google Scholar
  3. 3.
    Love RR. Adjuvant surgical oophorectomy plus tamoxifen in premenopausal women with operable hormone receptor-positive breast cancer: a global treatment option. Clin Breast Cancer. 2016;16(4):233–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Buchwald H. The evolution of metabolic/bariatric surgery. Obes Surg. Springer US. 2014;24(8):1126–35.CrossRefPubMedGoogle Scholar
  5. 5.
    Rubino F. From bariatric to metabolic surgery: definition of a new discipline and implications for clinical practice. Curr Atheroscler Rep. Springer US. 2013;15(12):369.CrossRefPubMedGoogle Scholar
  6. 6.
    Rubino F, Shukla A, Pomp A, Moreira M, Ahn SM, Dakin G. Bariatric, metabolic, and diabetes surgery: what’s in a name? Ann Surg. 2014;259(1):117–22.CrossRefPubMedGoogle Scholar
  7. 7.
    Frühbeck G. Bariatric and metabolic surgery: a shift in eligibility and success criteria. Nat Rev Endocrinol. Nature Research. 2015;11(8):465–77.CrossRefPubMedGoogle Scholar
  8. 8.
    Baskota A, Li S, Dhakal N, Liu G, Tian H. Bariatric surgery for type 2 diabetes mellitus in patients with BMI <30 kg/m2: a systematic review and meta-analysis. Folli F, editor. PLoS One. Public Library of Science; 2015;10(7):e0132335.Google Scholar
  9. 9.
    Buchwald H, Buchwald JN. Evolution of operative procedures for the management of morbid obesity 1950–2000. Obes Surg. 2002;12(5):705–17.CrossRefPubMedGoogle Scholar
  10. 10.
    Scott HW, Law DH, Sandstead HH, Lanier VC, Younger RK. Jejunoileal shunt in surgical treatment of morbid obesity. Ann Surg. Lippincott, Williams, and Wilkins. 1970;171(5):770–82.Google Scholar
  11. 11.
    Buchwald H, Varco RL. A bypass operation for obese hyperlipidemic patients. Surgery. 1971;70(1):62–70.PubMedGoogle Scholar
  12. 12.
    Ackerman NB. Observations on the improvements in carbohydrate metabolism in diabetic and other morbidly obese patients after jejunoileal bypass. Surg Gynecol Obstet. 1981;152(5):581–6.PubMedGoogle Scholar
  13. 13.
    Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. Lippincott, Williams, and Wilkins. 1995;222(3):339–50; discussion 350–2.Google Scholar
  14. 14.
    MacDonald KG, Long SD, Swanson MS, Brown BM, Morris P, Dohm GL, et al. The gastric bypass operation reduces the progression and mortality of non-insulin-dependent diabetes mellitus. J Gastrointest Surg. 1997;1(3):213–20; discussion 220.CrossRefPubMedGoogle Scholar
  15. 15.
    Courcoulas AP, Belle SH, Neiberg RH, Pierson SK, Eagleton JK, Kalarchian MA, et al. Three-year outcomes of bariatric surgery vs lifestyle intervention for type 2 diabetes mellitus treatment: a randomized clinical trial. JAMA Surg Am Med Assoc. 2015;150(10):931–40.CrossRefGoogle Scholar
  16. 16.
    Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet Elsevier. 2015;386(9997):964–73.CrossRefPubMedGoogle Scholar
  17. 17.
    Ribaric G, Buchwald JN, McGlennon TW. Diabetes and weight in comparative studies of bariatric surgery vs conventional medical therapy: a systematic review and meta-analysis. Obes Surg Springer US. 2014;24(3):437–55.CrossRefPubMedGoogle Scholar
  18. 18.
    Colquitt JL, Pickett K, Loveman E, Frampton GK. Surgery for weight loss in adults. Colquitt JL, editor. Cochrane Database Syst Rev. Chichester, UK: John Wiley & Sons, Ltd. 2014 8;(8):CD003641.Google Scholar
  19. 19.
    Sjöström L. Review of the key results from the Swedish Obese Subjects (SOS) trial – a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273(3):219–34.CrossRefPubMedGoogle Scholar
  20. 20.
    Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K, Wedel H, et al. Bariatric surgery and long-term cardiovascular events. JAMA Am Med Assoc. 2012;307(1):56–65.CrossRefGoogle Scholar
  21. 21.
    Sjöström L, Gummesson A, Sjöström CD, Narbro K, Peltonen M, Wedel H, et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol Elsevier. 2009;10(7):653–62.CrossRefPubMedGoogle Scholar
  22. 22.
    Tao W, Konings P, Hull MA, Adami H-O, Mattsson F, Lagergren J. Colorectal cancer prognosis following obesity surgery in a population-based cohort study. Obes Surg Springer US. 2016;7:1–7.Google Scholar
  23. 23.
    Mitchell AB, Glass D, and Gill AM. Bone disease after gastrectomy. Br Med J. BMJ Group; 1972;1(5798):461.Google Scholar
  24. 24.
    Fukuda M, Shibata H, Hatakeyama K, Yamagishi Y, Soga J, Koyama S, et al. Difference in calcium metabolism following Billroth-I and Billroth-II procedures for gastric and duodenal ulcers. Jpn J Surg. 1979;9(4):295–303.CrossRefPubMedGoogle Scholar
  25. 25.
    Yu EW. Bone metabolism after bariatric surgery. J Bone Miner Res. 2014;29(7):1507–18.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ivaska KK, Huovinen V, Soinio M, Hannukainen JC, Saunavaara V, Salminen P, et al. Changes in bone metabolism after bariatric surgery by gastric bypass or sleeve gastrectomy. Bone. 2016;95:47.CrossRefPubMedGoogle Scholar
  27. 27.
    Clark JM, Alkhuraishi ARA, Solga SF, Alli P, Diehl AM, Magnuson TH. Roux-en-Y gastric bypass improves liver histology in patients with non-alcoholic fatty liver disease. Obes Res Blackwell Publishing Ltd. 2005;13(7):1180–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Hassanian M, Al-Mulhim A, Al-Sabhan A, Al-Amro S, Bamehriz F, Abdo A, et al. The effect of bariatric surgeries on nonalcoholic fatty liver disease. Saudi J Gastroenterol. Medknow Publications. 2014;20(5):270–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Papadia F, Marinari GM, Camerini G, Adami GF, Murelli F, Carlini F, et al. Short-term liver function after biliopancreatic diversion. Obes Surg Springer. 2003;13(5):752–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Burza MA, Romeo S, Kotronen A, Svensson P-A, Sjöholm K, Torgerson JS, et al. Long-term effect of bariatric surgery on liver enzymes in the Swedish Obese Subjects (SOS) study. Targher G, editor. PLoS One. Public Library of Science. 2013;8(3):e60495.Google Scholar
  31. 31.
    Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. Elsevier. 2016;387(10019):679–90.CrossRefPubMedGoogle Scholar
  32. 32.
    Rosenblatt A, Faintuch J, Cecconello I. Abnormalities of reproductive function in male obesity before and after bariatric surgery-a comprehensive review. Obes Surg Springer US. 2015;25(7):1281–92.CrossRefPubMedGoogle Scholar
  33. 33.
    Eid GM, McCloskey C, Titchner R, Korytkowski M, Gross D, Grabowski C, et al. Changes in hormones and biomarkers in polycystic ovarian syndrome treated with gastric bypass. Surg Obes Relat Dis. 2014;10(5):787–91.CrossRefPubMedGoogle Scholar
  34. 34.
    Ashrafian H, le Roux CW, Rowland SP, Ali M, Cummin AR, Darzi A, et al. Metabolic surgery and obstructive sleep apnoea: the protective effects of bariatric procedures. Thorax. BMJ Publishing Group Ltd and British Thoracic Society. 2012;67(5):442–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Jackness C, Karmally W, Febres G, Conwell IM, Ahmed L, Bessler M, et al. Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell function in type 2 diabetic patients. Diabetes. American Diabetes Association. 2013;62(9):3027–32.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Knop FK, Taylor R. Mechanism of metabolic advantages after bariatric surgery: it’s all gastrointestinal factors versus it’s all food restriction. Diabetes Care. American Diabetes Association. 2013;36 Suppl 2(Supplement_2):S287–91.CrossRefPubMedGoogle Scholar
  37. 37.
    Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. Springer. 2011;54(10):2506–14.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Preitner F, Ibberson M, Franklin I, Binnert C, Pende M, Gjinovci A, et al. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J Clin Invest American Society for Clinical Investigation. 2004;113(4):635–45.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Salehi M, Prigeon RL, D’Alessio DA. Gastric bypass surgery enhances glucagon-like peptide 1-stimulated postprandial insulin secretion in humans. Diabetes. American Diabetes Association. 2011;60(9):2308–14.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Nadejda Bozadjieva JAW, Bernal-Mizrachi E. Glucagon. Pancreapedia: the exocrine pancreas knowledge base. Michigan Publishing, University of Michigan Library; 2014:1–12.Google Scholar
  41. 41.
    Scott RV, Tan TM, Bloom SR. Can Bayliss and Starling gut hormones cure a worldwide pandemic? J Physiol. 2014;592(23):5153–67.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jørgensen NB, Dirksen C, Bojsen-Møller KN, Jacobsen SH, Worm D, Hansen DL, et al. Exaggerated glucagon-like peptide 1 response is important for improved β-cell function and glucose tolerance after Roux-en-Y gastric bypass in patients with type 2 diabetes. Diabetes. 2013;62(9):3044–52.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Usinger L, Hansen KB, Kristiansen VB, Larsen S, Holst JJ, Knop FK. Gastric emptying of orally administered glucose solutions and incretin hormone responses are unaffected by laparoscopic adjustable gastric banding. Obes Surg. Springer. 2011;21(5):625–32.CrossRefPubMedGoogle Scholar
  44. 44.
    Laferrère B, Swerdlow N, Bawa B, Arias S, Bose M, Olivan B, et al. Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes. J Clin Endocrinol Metab. 2010;95(8):4072–6.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Dar MS, Chapman WH, Pender JR, Drake AJ, O’Brien K, Tanenberg RJ, et al. GLP-1 response to a mixed meal: what happens 10 years after Roux-en-Y gastric bypass (RYGB)? Obes Surg Springer. 2012;22(7):1077–83.CrossRefPubMedGoogle Scholar
  46. 46.
    le Roux CW, Welbourn R, Werling M, Osborne A, Kokkinos A, Laurenius A, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246(5):780–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Laferrère B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. American Diabetes Association. 2007;30(7):1709–16.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, Gidda J, et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol Nature Publishing Group. 2009;5(10):749–57.CrossRefPubMedGoogle Scholar
  49. 49.
    Cohen MA, Ellis SM, le Roux CW, Batterham RL, Park A, Patterson M, et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab Endocrine Society. 2003;88(10):4696–701.CrossRefPubMedGoogle Scholar
  50. 50.
    Prasad-Reddy L, Isaacs D. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. Drugs Context. 2015;4:212283–19.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239(1):1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Salinari S, le Roux CW, Bertuzzi A, Rubino F, Mingrone G. Duodenal-jejunal bypass and jejunectomy improve insulin sensitivity in Goto-Kakizaki diabetic rats without changes in incretins or insulin secretion. Diabetes. American Diabetes Association. 2014;63(3):1069–78.CrossRefPubMedGoogle Scholar
  54. 54.
    Patel RT, Shukla AP, Ahn SM, Moreira M, Rubino F. Surgical control of obesity and diabetes: the role of intestinal vs. gastric mechanisms in the regulation of body weight and glucose homeostasis. Obesity (Silver Spring). 2014;22(1):159–69.CrossRefGoogle Scholar
  55. 55.
    Romero F, Nicolau J, Flores L, Casamitjana R, Ibarzabal A, Lacy A, et al. Comparable early changes in gastrointestinal hormones after sleeve gastrectomy and Roux-En-Y gastric bypass surgery for morbidly obese type 2 diabetic subjects. Surg Endosc. Springer. 2012;26(8):2231–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Mokadem M, Zechner JF, Margolskee RF, Drucker DJ, Aguirre V. Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency. Mol Metab. 2014;3(2):191–201.CrossRefPubMedGoogle Scholar
  57. 57.
    Shah M, Law JH, Micheletto F, Sathananthan M, Dalla Man C, Cobelli C, et al. Contribution of endogenous glucagon-like peptide 1 to glucose metabolism after Roux-en-Y gastric bypass. Diabetes. American Diabetes Association. 2014;63(2):483–93.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Salehi M, Gastaldelli A, D’Alessio DA. Blockade of glucagon-like peptide 1 receptor corrects postprandial hypoglycemia after gastric bypass. Gastroenterology. Elsevier. 2014;146(3):669–680.e2.CrossRefPubMedGoogle Scholar
  59. 59.
    Kamvissi V, Salerno A, Bornstein SR, Mingrone G, Rubino F. Incretins or anti-incretins? A new model for the “entero-pancreatic axis”. Horm Metab Res. © Georg Thieme Verlag KG. 2015;47(1):84–7.Google Scholar
  60. 60.
    Lee CJ, Clark JM, Schweitzer M, Magnuson T, Steele K, Koerner O, et al. Prevalence of and risk factors for hypoglycemic symptoms after gastric bypass and sleeve gastrectomy. Obesity (Silver Spring). 2015;23(5):1079–84.CrossRefGoogle Scholar
  61. 61.
    Salinari S, Debard C, Bertuzzi A, Durand C, Zimmet P, Vidal H, et al. Jejunal proteins secreted by db/db mice or insulin-resistant humans impair the insulin signaling and determine insulin resistance. Federici M, editor. PLoS One. Public Library of Science. 2013;8(2):e56258.Google Scholar
  62. 62.
    Tong J, Prigeon RL, Davis HW, Bidlingmaier M, Kahn SE, Cummings DE, et al. Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans. Diabetes. Am Diab Assoc. 2010;59(9):2145–51.Google Scholar
  63. 63.
    Damdindorj B, Dezaki K, Kurashina T, Sone H, Rita R, Kakei M, et al. Exogenous and endogenous ghrelin counteracts GLP-1 action to stimulate cAMP signaling and insulin secretion in islet β-cells. FEBS Lett. 2012;586(16):2555–62.CrossRefPubMedGoogle Scholar
  64. 64.
    Malin SK, Samat A, Wolski K, Abood B, Pothier CE, Bhatt DL, et al. Improved acylated ghrelin suppression at 2 years in obese patients with type 2 diabetes: effects of bariatric surgery vs standard medical therapy. Int J Obes. Nature Publishing Group. 2014;38(3):364–70.CrossRefGoogle Scholar
  65. 65.
    Cummings DE. Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. Int J Obes. Nature Publishing Group. 2009;33(Suppl 1):S33–40.CrossRefGoogle Scholar
  66. 66.
    Toghaw P, Matone A, Lenbury Y, De Gaetano A. Bariatric surgery and T2DM improvement mechanisms: a mathematical model. Theor Biol Med Model. BioMed Central. 2012;9(1):16.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Chaudhry S, Bernardes M, Harris PE, Maffei A. Gastrointestinal dopamine as an anti-incretin and its possible role in bypass surgery as therapy for type 2 diabetes with associated obesity. Minerva Endocrinol. NIH Public Access. 2016;41(1):43–56.PubMedGoogle Scholar
  68. 68.
    Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy for diabetes – 5-year outcomes. N Engl J Med. Massachusetts Medical Society. 2017;376(7):641–51.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    First-phase insulin secretion, insulin sensitivity, ghrelin, GLP-1, and PYY changes 72 h after sleeve gastrectomy in obese diabetic patients: the gastric hypothesis. Springer; 2011;25(11):3540–50. Available from: http://link.springer.com/10.1007/s00464-011-1755-5.
  70. 70.
    Shabbir A, Dargan D. The success of sleeve gastrectomy in the management of metabolic syndrome and obesity. J Biomed Res. 2015;29(2):93–7.PubMedGoogle Scholar
  71. 71.
    Penney NC, Kinross J, Newton RC, Purkayastha S. The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: a systematic review. Int J Obes. Nature Publishing Group. 2015;39(11):1565–74.CrossRefGoogle Scholar
  72. 72.
    Kaska L, Sledzinski T, Chomiczewska A, Dettlaff-Pokora A, Swierczynski J. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World J Gastroenterol. 2016;22(39):8698–719.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10(3):167–77.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Wu T, Bound MJ, Standfield SD, Jones KL, Horowitz M, Rayner CK. Effects of taurocholic acid on glycemic, glucagon-like peptide-1, and insulin responses to small intestinal glucose infusion in healthy humans. J Clin Endocrinol Metab. Endocrine Society Chevy Chase, MD. 2013;98(4):E718–22.CrossRefPubMedGoogle Scholar
  75. 75.
    Adrian TE, Gariballa S, Parekh KA, Thomas SA, Saadi H, Kaabi Al J, et al. Rectal taurocholate increases L cell and insulin secretion, and decreases blood glucose and food intake in obese type 2 diabetic volunteers. Diabetologia. Springer. 2012;55(9):2343–7.CrossRefPubMedGoogle Scholar
  76. 76.
    Wu T, Bound MJ, Standfield SD, Gedulin B, Jones KL, Horowitz M, et al. Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diabetes Obes Metab Blackwell Publishing Ltd. 2013;15(5):474–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Kohli R, Setchell KD, Kirby M, Myronovych A, Ryan KK, Ibrahim SH, et al. A surgical model in male obese rats uncovers protective effects of bile acids post-bariatric surgery. Endocrinology. Endocrine Society Chevy Chase, MD. 2013;154(7):2341–51.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Flynn CR, Albaugh VL, Cai S, Cheung-Flynn J, Williams PE, Brucker RM, et al. Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nat Commun Nature Publishing Group. 2015;6:7715.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. Nature Research. 2014;509(7499):183–8.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Martinez-Augustin O, Sanchez de Medina F. Intestinal bile acid physiology and pathophysiology. World J Gastroenterol. Baishideng Publishing Group Inc. 2008;14(37):5630–40.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Bhutta HY, Rajpal N, White W, Freudenberg JM, Liu Y, Way J, et al. Effect of Roux-en-Y gastric bypass surgery on bile acid metabolism in normal and obese diabetic rats. Covasa M, editor. PLoS One. Public Library of Science. 2015;10(3):e0122273.Google Scholar
  82. 82.
    Li JV, Ashrafian H, Bueter M, Kinross J, Sands C, le Roux CW, et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut BMJ Publishing Group Ltd and British Society of Gastroenterology. 2011;60(9):1214–23.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Tremaroli V, Karlsson F, Werling M, Ståhlman M, Kovatcheva-Datchary P, Olbers T, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30(3):332–8.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Liou AP, Paziuk M, Luevano J-M, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. American Association for the Advancement of Science. 2013;5(178):178ra41.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Stojsavljević S, Gomerčić Palčić M, Virović Jukić L, Smirčić Duvnjak L, Duvnjak M. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. Baishideng Publishing Group Inc. 2014;20(48):18070–91.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci Frontiers. 2015;9(2):392.Google Scholar
  88. 88.
    Luther J, Garber JJ, Khalili H, Dave M, Bale SS, Jindal R, et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell Mol Gastroenterol Hepatol. 2015;1(2):222–32.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Cordera R, Adami GF. From bariatric to metabolic surgery: looking for a “disease modifier” surgery for type 2 diabetes. World J Diabetes. 2016;7(2):27–33.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Astiarraga B, Gastaldelli A, Muscelli E, Baldi S, Camastra S, Mari A, et al. Biliopancreatic diversion in nonobese patients with type 2 diabetes: impact and mechanisms. J Clin Endocrinol Metab. Endocrine Society Chevy Chase, MD. 2013;98(7):2765–73.CrossRefPubMedGoogle Scholar
  91. 91.
    Scopinaro N, Camerini G, Papadia F, Andraghetti G, Cordera R, Adami GF. Long-term clinical and functional impact of biliopancreatic diversion on type 2 diabetes in morbidly and non-morbidly obese patients. Surg Obes Relat Dis. Elsevier. 2016;12(4):822–7.CrossRefPubMedGoogle Scholar
  92. 92.
    Tharakan G, Scott R, Szepietowski O, Miras AD, Blakemore AI, Purkayastha S, et al. Limitations of the DiaRem score in predicting remission of diabetes following Roux-En-Y Gastric Bypass (RYGB) in an ethnically diverse population from a single institution in the UK. Obes Surg Springer US. 2016;10:1–5.Google Scholar
  93. 93.
    Troke RC, Tan TM, Bloom SR. The future role of gut hormones in the treatment of obesity. Ther Adv Chronic Dis SAGE Publications. 2014;5(1):4–14.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Miras A. The effects of liraglytide in controlling blood sugar and weight in poor-responders to bariatric surgery. Available at: https://doi.org/10.1186/ISRCTN13643081, accessed 3rd July 2018.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Endocrinology and Investigative MedicineImperial College LondonLondonUK
  2. 2.Department of Bariatric SurgerySt Mary’s Hospital, Imperial College LondonLondonUK

Personalised recommendations