Posterior Urethral Valves: Fetal and Neonatal Aspects

  • Lisieux Eyer de Jesus
  • João Luiz Pippi-Salle


Posterior urethral valves (PUV) are the most common form of urethral obstruction. The disease occurs in 1:5000–1:8000 live male neonates [1]. PUV are a significant cause of perinatal mortality and one of the most common causes of kidney failure in infancy and childhood (a third of the patients suffering from PUV progress to terminal kidney failure during life, and PUV constitute 15% of children undergoing renal transplantation). Grade 5 kidney failure is rare (7:1,000,000 neonates), but is determined almost exclusively by PUV/fetal urethral obstruction and bilateral renal hypoplasia/dysplasia. Survival of such neonates in dialysis is possible in modern referral centers: around 80% survive till preschool age [2], but at the cost of a very high morbidity and the need for renal transplantation in young children.


  1. 1.
    Clayton DB, Brock JW III. Lower urinary tract obstruction on the fetus and neonate. Clin Perinatol. 2014;41:643–59.CrossRefGoogle Scholar
  2. 2.
    Misurac J. Chronic kidney disease in the neonate: etiologies, management and outcomes. Semin Fetal Neonatal Med. 2017;22:98–103.CrossRefGoogle Scholar
  3. 3.
    Young HH, Fronz WA, Baldwin JC. Congenital obstruction of the posterior urethra. J Urol. 1919;3:289–365.CrossRefGoogle Scholar
  4. 4.
    Dewan PA, Goh DG. Variable expression of the congenital obstructive posterior urethral membrane. Urology. 1995;45(3):507–9.CrossRefGoogle Scholar
  5. 5.
    Taghavi K, Sharpe C, Stringer MD. Fetal megacystis: a systematic review. J Pediatr Urol. 2017;13:7–15.CrossRefGoogle Scholar
  6. 6.
    Farrugia MK. Fetal bladder outlet obstruction: embryo pathology in utero intervention and outcome. J Pediatr Urol. 2016;12:296–303.CrossRefGoogle Scholar
  7. 7.
    Jayanthi VR, Khoury AE, McLorie GA, Agarwal SK. The nonneurogenic neurogenic bladder of early infancy. J Urol. 1997;158:1281–5.CrossRefGoogle Scholar
  8. 8.
    Odeh R, Noone D, Bowlin PR, Braga LH, Lorenzo AJ. Predicting risk of chronic kidney disease in infants and young children at diagnosis of posterior urethral valves: initial ultrasound kidney characteristics and validation of parenchymal area as forecasters of renal reserve. J Urol. 2016;196:862–8.CrossRefGoogle Scholar
  9. 9.
    Matsell DG, Yu S, Morrison SJ. Antenatal determinants of log-term kidney outcome in boys with posterior urethral valves. Fetal Diagn Ther. 2016;39:214–21.CrossRefGoogle Scholar
  10. 10.
    Bilgutay AN, Roth DR, Gonzalez ET Jr, Janzen N, Zhang W, Koh CJ, Gargollo P, Seth A. Posterior urethral valves: risk factors for progression of renal failure. J Pediatr Urol. 2016;12:e1–7.CrossRefGoogle Scholar
  11. 11.
    Pulido JE, Furth SL, Zderic SA, Canning DA, Tasian GE. Renal parenchymal area and risk of ESRD in boys with posterior urethral valves. Clin J Am Soc Nephrol. 2014;9:499–505.CrossRefGoogle Scholar
  12. 12.
    Mandelia A, Bajpai M, Agarwala S, Gupta AK, Kumar R, Ali A. The role of urinary TGF-β1, TNF-α, IL-6 and microalbuminuria for monitoring therapy in posterior urethral valves. Pediatr Nephrol. 2013;28:1992–2001.CrossRefGoogle Scholar
  13. 13.
    Faure A, Bouty A, Caruana G, Williams L, Burgess T, Wong MN, James PA, O’Brien M, Walker A, Bertram JF, Heloury Y. DNA copy number variants: a potentially useful predictor of early onset renal failure in boys with posterior urethral valves. J Pediatr Urol. 2016;12:227.e1–7.CrossRefGoogle Scholar
  14. 14.
    Klein J, Lacroix C, Caubet C, Siwy J, Zurbig P, Dakna M, Muller F, Breuil B, Stalmach A, Mullen W, Mischak H, Bandin F, Monsarrat B, Bascands JL, Decramer S, Schanstra JP. Fetal urinary peptides to predict postnatal outcome of renal disease in fetuses with posterior urethral valves (PUV). Sci Transl Med. 2013;5:198ra106.CrossRefGoogle Scholar
  15. 15.
    Sarhan OM, Helmy TE, Alotay AA, Alghanbar MS, Nakshabandi ZM, Hafez AT. Dis antenatal diagnosis protect against chronic kidney disease in patients with posterior urethral valves? A multicenter study. Urology. 2013;82:1405–9.CrossRefGoogle Scholar
  16. 16.
    Ruano R, Sananes N, Sangi-Haghpeykar H, Hernandez-Ruano S, Moog R, Becmeur F, Zaloszyc A, Giron A, Morin B, Favre R. Fetal intervention for severe lower urinary tract obstruction: a multicenter case-control study comparing fetal cystoscopy with vesicoamniotic shunting. Ultrasound Obstet Gynecol. 2015;45:452–8.CrossRefGoogle Scholar
  17. 17.
    Sananes N, Cruz-Martinez R, Favre R, Ordorica-Flores R, Moog R, Zalosky A, Giron AM, Ruano R. Two-year outcomes after diagnostic and therapeutic fetal cystoscopy for lower urinary tract obstruction. Prenat Diagn. 2016;36:297–303.CrossRefGoogle Scholar
  18. 18.
    Martinez JM, Masoller N, Devlieger R, Passchyn E, Gomez O, Rodo J, Deprest JA, Gratacos E. Laser ablation of posterior urethral valves by fetal cystoscopy. Fetal Diagn Ther. 2015;37:267–73.CrossRefGoogle Scholar
  19. 19.
    Sananes N, Favre R, Koh CJ, Zalozyk A, Braun MC, Roth DR, Moog R, Becmeur F, Belfort MA, Ruano R. Urological fistulas after fetal cystoscopic laser ablation of posterior urethral valves: surgical technical aspects. Ultrasound Obstet Gynecol. 2015;45:183–9.CrossRefGoogle Scholar
  20. 20.
    Patti G, Naviglio S, Pennesi M, Gregori M, Moressa V, Ventura A. Normal voiding does not exclude posterior urethral valves. Arch Dis Child. 2013;98:634.CrossRefGoogle Scholar
  21. 21.
    Penna FJ, Bowlin P, Alyami F, Bagli DJ, Koyle MA, Lorenzo AJ. Novel strategy for temporary decompression of the lower urinary tract in neonates using a ureteral stent. J Urol. 2015;194:1086–90.CrossRefGoogle Scholar
  22. 22.
    Coleman R, King T, Nicoara CD, Bader M, McCarthy L, Chandran H, Parashar K. Nadir creatinine in posterior urethral valves: how high is low enough? J Pediatr Urol. 2015;11:356.e1–5.CrossRefGoogle Scholar
  23. 23.
    Jesus LE, Fazecas T, Ribeiro BG, Dekermacher S. Transperineal ultrasound as a tool to plan surgical strategies in pediatric urology: back to the future? Urology. 2017;104:175–8. [Epub ahead of print].CrossRefPubMedGoogle Scholar
  24. 24.
    Pagano MJ, van Batavia JP, Casale P. Laser ablation in the management of obstructive uropathy in neonates. J Endourol. 2015;29:611–4.CrossRefGoogle Scholar
  25. 25.
    Mandal S, Goel A, Kumar M, Singh MK, Singh V, Sankhwar SN, Singh BP, Dalela D. Use of Holmium: YAG laser in posterior urethral valves: another method of fulguration. J Pediatr Urol. 2013;9:2093–7.Google Scholar
  26. 26.
    Soliman SM. Primary ablation of posterior urethral valves in low birth weight neonates by a visually guided fogarty embolectomy catheter. J Urol. 2009;181:2284–9.CrossRefGoogle Scholar
  27. 27.
    Jaureguizar E, Lopez-Pereira P, Martinez-Urrutia MJ, Espinosa L, Lobato R. Does neonatal pyeloureterostomy worsen bladder function on children with posterior urethral valves? J Urol. 2000;164:1031–3.CrossRefGoogle Scholar
  28. 28.
    Casey JT, Hagerty JA, Maizels M, Chaviano AH, Yerkes E, Linkgren BW, Kaplan WE, Meyer T, Cheng EY. Early administration of oxybutynin improves bladder function and clinical outcomes in newborns with posterior urethral valves. J Urol. 2012;188(4S):1516–20.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lisieux Eyer de Jesus
    • 1
    • 2
  • João Luiz Pippi-Salle
    • 3
  1. 1.Pediatric Surgery and Urology DepartmentAntonio Pedro University HospitalRio de JaneiroBrazil
  2. 2.Servidores do Estado Federal HospitalRio de JaneiroBrazil
  3. 3.Division Chief of Urology Sidra Medical and Research CenterDohaQatar

Personalised recommendations