Anesthesiological Considerations: Stabilization of the Neonate, Fluid Administration, Electrolyte Balance, Vascular Access, ECMO, Bronchoscopy, and Pain in Neonates

  • Fabio CaramelliEmail author
  • Maria Teresa Cecini
  • Monica Fae
  • Elisa Iannella
  • Maria Cristina Mondardini


Despite progress in anesthesiology, neonatal anesthesia today still represents one of the most challenging areas in this field for the anatomical, physiopathological, and pharmacological features of newborn babies and requires not only highly specialist knowledge but also manual and technical skills, owing to the size and fragility of these patients.


  1. 1.
    Sanders RD, Hassell J, Davidson AJ, Robertson NJ, Ma D. Impact of anaesthetics and surgery on neurodevelopment: an update. Br J Anaesth. 2013;110(Suppl 1):i53–72.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Disma N, Mondardini MC, Terrando N, Absalom AR, Bilotta F. A systematic review of methodology applied during preclinical anesthetic neurotoxicity studies: important issues and lessons relevant to the design of future clinical research. Paediatr Anaesth. 2016;26:6–36.CrossRefPubMedGoogle Scholar
  3. 3.
    DiMaggio C, Sun LS, Li G. Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg. 2011;113:1143–51.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ing C, DiMaggio C, Whitehouse A, Hegarty MK, Brady J, von Ungern-Sternberg BS, et al. Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics. 2012;130:e476–85.CrossRefPubMedGoogle Scholar
  5. 5.
    Ing CH, DiMaggio CJ, Malacova E, Whitehouse AJ, Hegarty MK, Feng T, et al. Comparative analysis of outcome measures used in examining neurodevelopmental effects of early childhood anesthesia exposure. Anesthesiology. 2014;120:1319–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Flick RP, Katusic SK, Colligan RC, Wilder RT, Voigt RG, Olson MD, et al. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics. 2011;128:e1053–6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    FDA Drug Safety Communication. Accessed 21 Apr 2017.
  8. 8.
    Davison AJ, Disma N, de Graaff JC, et al., GAS Consortium. Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet. 2016;387:239–50.Google Scholar
  9. 9.
    Sun LS, Li G, Miller TL, et al. Association between a single general anesthesia exposure before age 36 months and neurocognitive outcomes in later childhood. JAMA. 2016;315:2312–20.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hansen TG. Use of anesthetics in young children Consensus statement of the European Society of Anaesthesiology (ESA), the European Society for Paediatric Anaesthesiology (ESPA), the European Association of Cardiothoracic Anaesthesiology (EACTA), and the European Safe Tots Anaesthesia Research Initiative (EuroSTAR). Paediatr Anaesth. 2017;27(6):558–9. Scholar
  11. 11.
    Weiss M, Hansen TG, Engelhardt T. Ensuring safe anaesthesia for neonates, infants and young children: what really matters. Arch Dis Child. 2016;101:650–2.CrossRefPubMedGoogle Scholar
  12. 12.
    Fowlie PW, Booth P, Skeoch CH. Moving the preterm infant. BMJ. 2004;329(7471):904–6q.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    McCann ME, Soriano SG. Perioperative central nervous system injury in neonates. Br J Anaesth. 2012;109(Suppl I):160–7.Google Scholar
  14. 14.
    Kotecha S, Barbato A, Bush A, Claus F, Davenport M, et al. Congenital diaphragmatic hernia. Eur Respir J. 2012;39(4):820–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Reiss I, Schaible T, van den Hout L, Capolupo I, Allegaert K, van Heijst A, et al. Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: the CDH EURO Consortium consensus. Neonatology. 2010;98:354–64.CrossRefPubMedGoogle Scholar
  16. 16.
    Van Meurs K, Congenital Diaphragmatic Hernia Study Group. Is surfactant therapy beneficial in the treatment of the term newborn infant with congenital diaphragmatic hernia? J Pediatr. 2004;145:312–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Snoek KG, Capolupo I, van Rosmalen J, Hout Lde J, Vijfhuize S, Greenough A, Wijnen RM, Tibboel D, Reiss IK, CDH EURO Consortium. Conventional mechanical ventilation versus high-frequency oscillatory ventilation for congenital diaphragmatic hernia: a randomized clinical trial (the VICI-trial). Ann Surg. 2016;263(5):867–74.CrossRefPubMedGoogle Scholar
  18. 18.
    Moenkemeyer F, Patel N. Right ventricular diastolic function measured by tissue Doppler imaging predicts early outcome in congenital diaphragmatic hernia. Pediatr Crit Care Med. 2014;15:49–55.CrossRefPubMedGoogle Scholar
  19. 19.
    Aggarwal S, Stockmann P, Klein MD, Natarajan G. Echocardiographic measures of ventricular function and pulmonary artery size: prognostic markers of congenital diaphragmatic hernia? J Perinatol. 2011;31:561–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Kinsella JP. Inhaled nitric oxide in the term newborn. Early Hum Dev. 2008;84:709–16.CrossRefPubMedGoogle Scholar
  21. 21.
    The Neonatal Inhaled Nitric Oxide Study Group (NINOS). Inhaled nitric oxide and hypoxic respiratory failure in infants with congenital diaphragmatic hernia. Pediatrics. 1997;99:838–45.CrossRefGoogle Scholar
  22. 22.
    Patel N. Use of milrinone to treat cardiac dysfunction in infants with pulmonary hypertension secondary to congenital diaphragmatic hernia: a review of six patients. Neonatology. 2012;102:130–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Noori S, Friedlich P, Wong P, Garingo A, Seri I. Cardiovascular effects of sildenafil in neonates and infants with congenital diaphragmatic hernia and pulmonary hypertension. Neonatology. 2007;91:92–100.CrossRefPubMedGoogle Scholar
  24. 24.
    Atz AM, Wessel DL. Sildenafil ameliorates effects of inhaled nitric oxide withdrawal. Anesthesiology. 1999;91:307–10.CrossRefPubMedGoogle Scholar
  25. 25.
    De Luca D, Zecca E, Vento G, De Carolis MP, Romagnoli C. Transient effect of epoprostenol and sildenafil combined with iNO for pulmonary hypertension in congenital diaphragmatic hernia. Paediatr Anaesth. 2006;16:597–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Goissen C, Ghyselen L, Tourneux P, Krim G, Storme L, Bou P, et al. Persistent pulmonary hypertension of the newborn with transposition of the great arteries: successful treatment with bosentan. Eur J Pediatr. 2008;167:437–40.CrossRefPubMedGoogle Scholar
  27. 27.
    Buss M, Williams G, Dilley A, Jones O. Prevention of heart failure in the management of congenital diaphragmatic hernia by maintaining ductal patency. A case report. J Pediatr Surg. 2006;41:e9–11.CrossRefPubMedGoogle Scholar
  28. 28.
    Shiyanagi S, Okazaki T, Shoji H, Shimizu T, Tanaka T, Takeda S, et al. Management of pulmonary hypertension in congenital diaphragmatic hernia: nitric oxide with prostaglandin-E1 versus nitric oxide alone. Pediatr Surg Int. 2008;24:1101–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Gentili A, Giuntoli L, Bacchi Reggiani ML, et al. Neonatal congenital diaphragmatic hernia: respiratory and blood-gas derived indices in choosing surgical timing. Minerva Anestesiol. 2012;78:1117–25.PubMedGoogle Scholar
  30. 30.
    Di Nardo M, De Matteis GM, Cecchetti C, Pasotti E, Tomasello C, Marano M, et al. Echocardiographic evaluation and clinical management of ductal shunting in hemodynamically unstable preterm neonates without congenital heart disease in the pediatric intensive care unit. Minerva Anestesiol. 2010;76:209–14.PubMedGoogle Scholar
  31. 31.
    Galante D. Echocardiography as a reliable tool in neonates with ductal shunting. Minerva Anestesiol. 2010;76:178–80.PubMedGoogle Scholar
  32. 32.
    Friis-Hansen B. Body water compartments in children: changes during growth and related changes in body composition. Pediatrics. 1961;28:169–81.PubMedGoogle Scholar
  33. 33.
    Hartnoll G, Bétrémieux P, Modi N. Body water content of extremely preterm infants at birth. Arch Dis Child Fetal Neonatal Ed. 2000;83(1):F56–9.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Martinerie L, Pussard E, Foix-L’Helias L, Petit F, Cosson C, Boileau F, Lombe’s M. Physiological partial aldosterone resistance in human newborns. Pediatr Res. 2009;66(3):323–8.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mir T, Laux R, Henning-Hellwage H, Liedke B, Heinze C, von Buelow H, Laer S, Weil J. Plasma concentrations of amino terminal pro atrial natriuretic peptide and amino terminal pro brain natriuretic peptide in healthy neonates: marked rise and rapid increase after birth. Pediatrics. 2003;112(4):896–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Drukker A, Guignard J-P. Renal aspects of the term and preterm infant: a selective update. Curr Opin Pediatr. 2002;14:175–82.CrossRefPubMedGoogle Scholar
  37. 37.
    Aly H, Davies J, El-Dib M, Massaro A. Renal function is impaired in small for gestational age premature infants. J Matern Fetal Neonatal. 2013;26(4):388–91.CrossRefGoogle Scholar
  38. 38.
    Moritz ML, Ayus JC. Hyponatremia in preterm neonates: not a benign condition. Pediatrics. 2009;124:e1014–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Oh GJ, Sutherland SM. Perioperative fluid management and postoperative hyponatremia in children. Pediatr Nephrol. 2016;31(1):53–60.CrossRefPubMedGoogle Scholar
  40. 40.
    Bailey AG, McNaull PP, Jooste E, Tuchman JB. Perioperative crystalloid and colloid fluid management in children: where are we and how did we get here? Anesth Analg. 2010;110:375–90.CrossRefPubMedGoogle Scholar
  41. 41.
    Brazel PW, McPhee IB. Inappropriate secretion of antidiuretic hormone in postoperative scoliosis patients: the role of fluid management. Spine (Phila Pa 1976). 1996;21:724–7.CrossRefGoogle Scholar
  42. 42.
    Edjo Nkilly G, Michelet D, Hilly J, Diallo T, Greff B, Mangalsuren N, Lira E, Bounadja I, Brasher C, Bonnard A, Malbezin S, Nivoche Y, Dahmani S. Postoperative decrease in plasma sodium concentration after infusion of hypotonic intravenous solutions in neonatal surgery. Br J Anaesth. 2014;112(3):540–5.CrossRefPubMedGoogle Scholar
  43. 43.
    National Clinical Guideline Centre. IV Fluids in children: intravenous fluid therapy in children and young people in hospital. NICE Guideline No. 29. National Institute for Health and Care Excellence(UK); 2015.
  44. 44.
    Bailey A, McNaull P, Jooste E, Tuchman J. Perioperative crystalloid and colloid fluid management in children: where are we and how did we get there? Anesth Analg. 2010;110:375–90.CrossRefPubMedGoogle Scholar
  45. 45.
    Frykholm P, Schindler E, Sümpelmann R, Walker R, Weiss M. Preoperative fasting in children: review of existing guidelines and recent developments. Br J Anaesth. 2018;120(3):469–74.CrossRefPubMedGoogle Scholar
  46. 46.
    Sümpelmann R, Becke K, Brenner S, Breschan C, Eich C, Höhne C, Jöhr M, Kretz FJ, Marx G, Pape L, Schreiber M, Strauss J, Weiss M. Perioperative intravenous fluid therapy in children: guidelines from the Association of the Scientific Medical Societies in Germany. Paediatr Anaesth. 2017;27(1):10–18.9.CrossRefPubMedGoogle Scholar
  47. 47.
    Datta PK, Pawar DK, Baidya DK, Maitra S, et al. Dextrose-containing intraoperative fluid in neonates: a randomized controlled trial. Paediatr Anaesth. 2016;26(6):599–607.CrossRefPubMedGoogle Scholar
  48. 48.
    Allegaert K, et al. Maturational pharmacokinetics of single intravenous bolus of propofol. Pediatr Anesth. 2007;17:1028–34.CrossRefGoogle Scholar
  49. 49.
    Anderson BJ. Pharmacology in the very young: anaesthetic implications. Eur J Anesthesia. 2012;29:261–70.CrossRefGoogle Scholar
  50. 50.
    Allegaert K, van de Velde M, van den Anker J. Neonatal clinical pharmacology. Pediatric Anaesth. 2014;24:30–8.CrossRefGoogle Scholar
  51. 51.
    Anderson BJ. My child is unique; the pharmacokinetics are universal. Pediatric Anaesth. 2012;22:530–8.CrossRefGoogle Scholar
  52. 52.
    Laughon MM, Avant D, Tripathi N, Hornik CP, Cohen-Wolkowiez M, Clark RH, et al. Drug labeling and exposure in neonates. JAMA Pediatr. 2014;168:130–6.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Nasr VG, Davis JM. Anesthetic use in newborn infants: the urgent need for rigorous evaluation. Pediatric Res. 2015;78:2–6.CrossRefGoogle Scholar
  54. 54.
    Thomas J. Reducing the risk in neonatal anesthesia. Pediatric Anaesth. 2014;24:106–13.CrossRefGoogle Scholar
  55. 55.
    Cornelissen L, Kim SE, Purdon PL, Brown EN. Berde CB Age-dependent electroencephalogram (EEG) patterns during sevoflurane general anesthesia in infants. Elife. 2015;4:e06513.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Rhondali O, Attof R, Combet S, Chassard D, de Queiroz Sigueira M. Ultrasound-guided subclavian vein cannulation in infants: supraclavicular approach. Paediatr Anaesth. 2011;21:1136–41.CrossRefPubMedGoogle Scholar
  57. 57.
    Sigaut S, Skhiri A, Stany I, Golmar J, Nivoche Y, Constant I, et al. Ultrasound guided internal jugular vein access in children and infant: a meta-analysis of published studies. Paediatr Anaesth. 2009;19:1199–206.CrossRefPubMedGoogle Scholar
  58. 58.
    Anderson J, Leonard D, Braner D, et al. Umbilical vascular catheterization. N Engl J Med. 2008;359:e18.CrossRefPubMedGoogle Scholar
  59. 59.
    Chapter 44. Venous access: umbilical vein catheterization In: Gomella TL, Cunningham MD, Eyal FG. Neonatology, management, procedures, on-call problems, diseases, and drugs. LANGE, clinical manual. 7th ed. New York: McGraw-Hill Education; 2013. p. 316–23.Google Scholar
  60. 60.
    Chokshi NK, Nguyen N, Cinat M. Access in the neonatal and paediatric patient. In: Wilson SE, editor. Vascular access: principles and practice. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2009. p. 139–49.Google Scholar
  61. 61.
    American College of Surgeons Committee on Trauma. Advanced trauma life support student course manual. 9th ed. Chicago, IL: American College of Surgeons; 2012.Google Scholar
  62. 62.
    Ainsworth SB, Clerihew L, McGuire W. Percutaneous central venous catheters versus peripheral cannulae for delivery of parenteral nutrition in neonates. Cochrane Database Syst Rev. 2007;(3):CD004219.Google Scholar
  63. 63.
    Merchaoui Z, Lausten-Thomsen U, Pierre F, Ben Laiba M, Le Saché N, Tissieres P. Supraclavicular approach to ultrasound-guided brachiocephalic vein cannulation in children and neonates. Front Pediatr. 2017;5:211.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lausten-Thomsen U, Merchaoui Z, Dubois C, Eleni Dit Trolli S, Le Saché N, Mokhtari M, Tissières P. Ultrasound-guided subclavian vein cannulation in low birth weight neonates. Pediatr Crit Care Med. 2017;18(2):172–5.CrossRefPubMedGoogle Scholar
  65. 65.
    Huang EY, Chen C, Abdullah F, Aspelund G, Barnhart DC, Calkins CM, et al., 2011 American Pediatric Surgical Association Outcomes and Clinical Trials Committee. Strategies for the prevention of central venous catheter infections: an American Pediatric Surgical Association Outcomes and Clinical Trials Committee systematic review. J Pediatr Surg. 2011;46(10):2000–11.Google Scholar
  66. 66.
    Chaiyakunapruk N, Veenstra DL, Lipsky BA, Saint S. Chlorhexidine compared with povidone-iodine solution for catheter-site care: a meta-analysis. Ann Intern Med. 2002;136(4):792–801.CrossRefPubMedGoogle Scholar
  67. 67.
    Shah PS, Kalyn A, Satodia P, Dunn MS, Parvez B, et al. A randomized, controlled trial of heparin versus placebo infusion to prolong the usability of peripherally placed percutaneous central venous catheters (PCVCs) in neonates: the HIP (Heparin Infusion for PCVC) study. Pediatrics. 2007;119(1):e284–91.CrossRefPubMedGoogle Scholar
  68. 68.
    Shah PS, Shah VS. Continuous heparin infusion to prevent thrombosis and catheter occlusion in neonates with peripherally placed percutaneous central venous catheters. Cochrane Database Syst Rev. 2008;(2):CD002772.Google Scholar
  69. 69.
    Birch P, Ogden S, Hewson M. A randomised, controlled trial of heparin in total parenteral nutrition to prevent sepsis associated with neonatal long lines: the Heparin in Long Line Total Parenteral Nutrition (HILLTOP) trial. Arch Dis Child Fetal Neonatal Ed. 2010;95(4):F252–7.CrossRefPubMedGoogle Scholar
  70. 70.
    Monagle P, Chan AKC, Goldenberg NA, Ichord RN, Journeycake JM, Nowak-Göttl U, Vesely SK. Antithrombotic therapy in neonates and children: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e737S–801S.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Schindler E, Kowald B, Suess H, et al. Catheterization of the radial or brachial artery in neonates and infants. Paediatr Anaesth. 2005;15:677–82.CrossRefPubMedGoogle Scholar
  72. 72.
    Mok Q. Airways problem in neonates—a review of the current investigations and management strategies. Front Pediatr. 2017;5:1–10, art. 60.CrossRefGoogle Scholar
  73. 73.
    Soyer T. The role bronchoscopy in the diagnosis of airway disease in children. J Thorac Dis. 2016;8(11):3420–6.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Lal DR, Gadepalli SK, Downard CD, et al. Perioperative management and outcomes of esophageal atresia and tracheoesophageal fistula. J Pediatr Surg. 2017;52(8):1245–51.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Leong AB, Green CG, Kurland G, Wood RE. A survey of training in pediatric flexible bronchoscopy. Pediatr Pneumolog. 2014;49(6):605–10.Google Scholar
  76. 76.
    Rignini CA, Morel N, Karkas A, Reyt E, et al. What is the diagnosis value of flexible bronchoscopy in the initial investigation of children with suspected foreign body aspiration? Int J Pediatr Otorhinolaryngol. 2007;71:1383–90.CrossRefGoogle Scholar
  77. 77.
    Bartlett RH, Gazzaniga AB, Jefferies MR, Huxtable RF, Haiduc NJ, Fong SW. Extracorporeal membrane oxygenation (ECMO) cardiopulmonary support in infancy. Trans Am Soc Artif Intern Organs. 1976;22:80–93.PubMedGoogle Scholar
  78. 78.
    Bartlett RH. Esperanza: the first neonatal ECMO patient. ASAIO J. 2017;63(6):832–43.CrossRefPubMedGoogle Scholar
  79. 79.
    Bartlett RH, Roloff DW, Cornell RG, et al. Extracorporeal circulation in neonatal respiratory failure: a prospective randomized study. Pediatrics. 1985;76:479–87.PubMedGoogle Scholar
  80. 80.
    Schumacher RE, Roloff DW, Chapman R, Snedecor S, Bartlett RH. Extracorporeal membrane oxygenation in term newborns: a prospective cost benefit analysis. ASAIO J. 1993;39:873–9.CrossRefPubMedGoogle Scholar
  81. 81.
    O’Rourke PP, Crone R, Vacanti J, et al. Extracorporeal membrane oxygenation and conventional medical therapy in neonates with persistent pulmonary hypertension of the newborn: a prospective randomized study. Pediatrics. 1989;84:957–63.PubMedGoogle Scholar
  82. 82.
    UK Neonatal EMCO Trial Group. UK collaborative randomized trial of neonatal extracorporeal membrane oxygenation. Lancet. 1996;348:75–82. Scholar
  83. 83.
    Van Heijst AF, van der Staak FH, Geven WB, et al. Results of extracorporeal membrane oxygenation in 100 newborns with cardiorespiratory insufficiency. Ned Tijdschr Geneeskd. 1999;143:356–60.PubMedGoogle Scholar
  84. 84.
    Roy BJ, Rycus P, Conrad SA, Clark RH. The changing demographics of neonatal extracorporeal membrane oxygenation patients were reported to the Extracorporeal Life Support Organization (ELSO) Registry. Pediatrics. 2000;106(6):1334–8.CrossRefPubMedGoogle Scholar
  85. 85.
    International Summary of ELSO Registry Report. Extracorporeal Life Support Organization (ELSO), Ann Arbor, MI, Jan and July 2017.Google Scholar
  86. 86.
    Davis PJ, Firmin RK, Manktelow B, et al. Long-term outcome following extracorporeal membrane oxygenation for congenital diaphragmatic hernia: the UK experience. J Pediatr. 2004;144:309–15.CrossRefPubMedGoogle Scholar
  87. 87.
    Morini F, Goldman A, Pierro A. Extracorporeal membrane oxygenation in infants with congenital diaphragmatic hernia: a systematic review of the evidence. Eur J Pediatric Surg. 2006;16:385–91.CrossRefGoogle Scholar
  88. 88.
    Mugford M, Elbourne D, Field D. Extracorporeal membrane oxygenation for severe respiratory failure in newborn infants. Cochrane Database Syst Rev. 2008;3:CD001340.Google Scholar
  89. 89.
    Jani JC, Peralta CF, Nicolaides KH. Lung-to-head ratio: a need to unify the technique. Ultrasound Obstet Gynecol. 2012;39:2–6.CrossRefPubMedGoogle Scholar
  90. 90.
    Jani J, Nicolaides KH, Keller RL, et al. Observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia. Ultrasound Obstet Gynecol. 2007;30:67–71.CrossRefPubMedGoogle Scholar
  91. 91.
    Russo FM, Eastwood MP, Keijzer R, et al. Lung size and liver herniation predict need for extracorporeal membrane oxygenation but not pulmonary hypertension in isolated congenital diaphragmatic hernia: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2017;49:704–13.CrossRefPubMedGoogle Scholar
  92. 92.
    Zalla JM, Stoddard GJ, Yoder BA. Improved mortality rate for congenital diaphragmatic hernia in the modern era of management: 15 year experience in a single institution. J Pediatric Surg. 2015;50:524–7.CrossRefGoogle Scholar
  93. 93.
    Logan JW, Rice HE, Goldberg RN, et al. Congenital diaphragmatic hernia: a systematic review and summary of best-evidence practice strategies. J Perinatal. 2007;27:535–49.CrossRefGoogle Scholar
  94. 94.
    Inpatient management standards for CDH: Scottish Diaphragmatic Hernia Clinical Network, 2013. Accessed 4 Jul 2017.
  95. 95.
    Puligandla PS, Skarsgard ED. The Canadian Pediatric Surgery Network congenital diaphragmatic hernia evidence review project: developing national guidelines for care. Pediatric Child Health. 2016;21:183–6.CrossRefGoogle Scholar
  96. 96.
    Benjamin JR, Bizzarro MJ, Cotton CM. Congenital diaphragmatic hernia: updates and outcomes. NeoReviews. 2011;12:e439–52.CrossRefGoogle Scholar
  97. 97.
    Kays DW, Islam S, Richards DS, et al. Extracorporeal life support in patients with congenital diaphragmatic hernia: how long should we treat? J Am Coll Surg. 2014;218:808–17.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    ELSO Guidelines for cardiopulmonary extracorporeal life support extracorporeal life support organization, version 1.4, Ann Arbor, MI, Dec 2017.
  99. 99.
    Baiocchi M, Caramelli F, Frascaroli G. ECMO for postcardiotomic shock. In: Sangalli F, Patroniti N, Pesenti A, editors. ECMO-extracorporeal life support in adults. Milano: Springer; 2014.Google Scholar
  100. 100.
    Anderson HL, Snedecor SM, Otsu T, Bartlett RH. Multi-centre comparison of conventional veno-arterial access versus veno-venous double-lumen catheter access in newborn infants undergoing extra-corporeal membrane oxygenation. J Pediatric Surg. 1993;28(4):530–534 (discussion 534–5).CrossRefGoogle Scholar
  101. 101.
    Gauger PG, Hirschl RB, Delosh TN, Dechert RE, Tracy T, Bartlett RH. A matched pairs analysis of veno-arterial and veno-venous extracorporeal life support in neonatal respiratory failure. ASAIO J. 1995;41(3):M573–9.CrossRefPubMedGoogle Scholar
  102. 102.
    Chen H, Yu R-G, Yin N-N, Zhou J-X. Combination of extracorporeal membrane oxygenation and continuous renal replacement therapy in critically ill patients: a systematic review. Crit Care. 2014;18(6):675.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Anand KJ, Sippel WG, Schofield NM, Aynsley-Green A. Does halothane anaesthesia decrease the metabolic and endocrine stress responses of newborn infants undergoing operation? Br Med J (Clin Res Ed). 1988;296(6623):668–72.CrossRefGoogle Scholar
  104. 104.
    Anand KJS, Hickey PR. Pain and its effects in the human neonate and fetus. N Engl Med. 1987;317:1321–9.CrossRefGoogle Scholar
  105. 105.
    Taddio A, Katz J, Ilersich AL, Koren G. Effect of neonatal circumcision on pain response during subsequent routine vaccination. Lancet. 1997;349:599–603.CrossRefPubMedGoogle Scholar
  106. 106.
    Davidson A, Flick RP. Neurodevelopmental implications of the use of sedation and analgesia in neonates. Clin Perinatol. 2013;40:559–73.CrossRefPubMedGoogle Scholar
  107. 107.
    Locatelli C, Bellieni CV. Sensorial saturation and neonatal pain: a review. J Matern Fetal Neonatal Med. 2017;23:1–5.Google Scholar
  108. 108.
    Crews KR, Gaedigk A, Dunnenberger HM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther. 2014;95(4):376–82.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Calder A, Bell GT, Andersson M, et al. Pharmacokinetic profiles of epidural bupivacaine and ropivacaine following single-shot and continuous epidural use in young infants. Paediat Anaesth. 2012;22(5):430–7.CrossRefGoogle Scholar
  110. 110.
    Suresh S, De Oliveira GS Jr. Blood bupivacaine concentrations after transversus abdominis plane block in neonates: a prospective observational study. Anesth Analg. 2016;122(3):814–7.CrossRefPubMedGoogle Scholar
  111. 111.
    Allegaert K, Palmer GM, Anderson BJ. The pharmacokinetics of intravenous paracetamol in neonates: size matters most. Arch Dis Child. 2011;96(6):575–80.CrossRefPubMedGoogle Scholar
  112. 112.
    Palmer GM, Atkins M, Anderson BJ, et al. I.V. acetaminophen pharmacokinetics in neonates after multiple doses. Br J Anaesth. 2008;101(4):523–30.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fabio Caramelli
    • 1
    Email author
  • Maria Teresa Cecini
    • 1
  • Monica Fae
    • 1
  • Elisa Iannella
    • 1
  • Maria Cristina Mondardini
    • 1
  1. 1.Department of Anaesthesia and Pediatric Intensive Care UnitS.Orsola University HospitalBolognaItaly

Personalised recommendations