Hypertension in Diabetic Kidney Disease

  • Gema Ruiz-Hurtado
  • Luis M. Ruilope


The incidence and prevalence of diabetes mellitus (DM) are continuously growing throughout the world especially resulting from the increase in type 2 DM, which in turn is closely related to the increased prevalence of obesity. Both DM and obesity are closely related to arterial hypertension, and DM is the main cause of end-stage renal disease. Chronic kidney disease (CKD) in DM has different origins beyond diabetic nephropathy that requires a renal biopsy to make an adequate diagnosis. Because renal biopsy is not widely performed and since treatment is practically the same for renal protection in the different forms of diabetic CKD, the term diabetic kidney disease (DKD), instead of diabetic nephropathy, is amply used. Arterial hypertension requires to be strictly controlled in patients with DKD. This chapter reviews the adequate diagnosis of elevated blood pressure (BP), the goal BP to be attained, and the way to achieve it through the combination of drugs including new oral antidiabetic drugs in type 2 DM and particularly in DKD.


Diabetic kidney disease Arterial hypertension Goal blood pressure BP measurement Antihypertensive treatment New antidiabetic drugs and BP 


  1. 1.
    Collaborators GRF. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1659–724.CrossRefGoogle Scholar
  2. 2.
    Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJ, Group CRAC. Selected major risk factors and global and regional burden of disease. Lancet. 2002;360:1347–60.CrossRefGoogle Scholar
  3. 3.
    Ruilope LM. Current challenges in the clinical management of hypertension. Nat Rev Cardiol. 2011;9:267–75.CrossRefGoogle Scholar
  4. 4.
    Molitch ME, Adler AI, Flyvbjerg A, et al. Diabetic kidney disease: a clinical update from kidney disease: improving global outcomes. Kidney Int. 2015;87:20–30.CrossRefGoogle Scholar
  5. 5.
    Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.CrossRefGoogle Scholar
  6. 6.
    Chapter 4: Blood pressure management in CKD ND patients with diabetes mellitus. Kidney Int Suppl (2011). 2012;2:363–9.Google Scholar
  7. 7.
    Taler SJ, Agarwal R, Bakris GL, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for management of blood pressure in CKD. Am J Kidney Dis. 2013;62:201–13.CrossRefGoogle Scholar
  8. 8.
    Cushman WC, Evans GW, Byington RP, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.CrossRefGoogle Scholar
  9. 9.
    de Boer IH, Bangalore S, Benetos A, et al. Diabetes and hypertension: a position statement by the American Diabetes Association. Diabetes Care. 2017;40:1273–84.CrossRefGoogle Scholar
  10. 10.
    O’Brien E, Parati G, Stergiou G, et al. European Society of Hypertension position paper on ambulatory blood pressure monitoring. J Hypertens. 2013;31:1731–68.CrossRefGoogle Scholar
  11. 11.
    Gorostidi M, Sarafidis PA, de la Sierra A, et al. Differences between office and 24-hour blood pressure control in hypertensive patients with CKD: a 5,693-patient cross-sectional analysis from Spain. Am J Kidney Dis. 2013;62:285–94.CrossRefGoogle Scholar
  12. 12.
    Gorostidi M, Banegas JR, de la Sierra A, Vinyoles E, Segura J, Ruilope LM. Ambulatory blood pressure monitoring in daily clinical practice – the Spanish ABPM Registry experience. Eur J Clin Investig. 2016;46:92–8.CrossRefGoogle Scholar
  13. 13.
    Banegas JR, Ruilope LM, de la Sierra A, et al. Clinic versus daytime ambulatory blood pressure difference in hypertensive patients: the impact of age and clinic blood pressure. Hypertension. 2017;69:211–9.CrossRefGoogle Scholar
  14. 14.
    Gorostidi M, Vinyoles E, Banegas JR, de la Sierra A. Prevalence of white-coat and masked hypertension in national and international registries. Hypertens Res. 2015;38:1–7.CrossRefGoogle Scholar
  15. 15.
    Parati G, Stergiou G, O'Brien E, et al. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens. 2014;32:1359–66.CrossRefGoogle Scholar
  16. 16.
    Ruiz-Hurtado G, Ruilope LM, de la Sierra A, et al. Association between high and very high albuminuria and nighttime blood pressure: influence of diabetes and chronic kidney disease. Diabetes Care. 2016;39:1729–37.CrossRefGoogle Scholar
  17. 17.
    Lurbe E, Redon J, Kesani A, et al. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med. 2002;347:797–805.CrossRefGoogle Scholar
  18. 18.
    Lawes CM, Vander Hoorn S, Rodgers A, Hypertension ISo. Global burden of blood-pressure-related disease, 2001. Lancet. 2008;371:1513–8.CrossRefGoogle Scholar
  19. 19.
    Tajeu GS, Booth JN, Colantonio LD, et al. Incident cardiovascular disease among adults with blood pressure <140/90 mm Hg. Circulation. 2017;136:798–812.CrossRefGoogle Scholar
  20. 20.
    Egan BM, Stevens-Fabry S. Prehypertension–prevalence, health risks, and management strategies. Nat Rev Cardiol. 2015;12:289–300.CrossRefGoogle Scholar
  21. 21.
    Wright JT, Williamson JD, Whelton PK, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16.CrossRefGoogle Scholar
  22. 22.
    Ruilope LM, Nowack C, Bakris GL. Masked and nocturnal hypertension in the ARTS-DN ABPM sub-study with Finerenone. J Am Soc Hypertens. 2016;10(Suppl 1):e7.CrossRefGoogle Scholar
  23. 23.
    Drawz PE, Pajewski NM, Bates JT, et al. Effect of intensive versus standard clinic-based hypertension management on ambulatory blood pressure: results from the SPRINT (systolic blood pressure intervention trial) ambulatory blood pressure study. Hypertension. 2017;69:42–50.CrossRefGoogle Scholar
  24. 24.
    Kjeldsen SE, Lund-Johansen P, Nilsson PM, Mancia G. Unattended blood pressure measurements in the systolic blood pressure intervention trial: implications for entry and achieved blood pressure values compared with other trials. Hypertension. 2016;67:808–12.CrossRefGoogle Scholar
  25. 25.
    Parati G, Ochoa JE, Bilo G, Zanchetti A. SPRINT blood pressure: sprinting back to Smirk’s basal blood pressure? Hypertension. 2017;69:15–9.CrossRefGoogle Scholar
  26. 26.
    Myers MG, Valdivieso M, Kiss A. Use of automated office blood pressure measurement to reduce the white coat response. J Hypertens. 2009;27:280–6.CrossRefGoogle Scholar
  27. 27.
    Bakris GL, Agarwal R, Chan JC, et al. Effect of Finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015;314:884–94.CrossRefGoogle Scholar
  28. 28.
    Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387:957–67.CrossRefGoogle Scholar
  29. 29.
    Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 2. Effects at different baseline and achieved blood pressure levels–overview and meta-analyses of randomized trials. J Hypertens. 2014;32:2296–304.CrossRefGoogle Scholar
  30. 30.
    Bundy JD, Li C, Stuchlik P, et al. Systolic blood pressure reduction and risk of cardiovascular disease and mortality: a systematic review and network meta-analysis. JAMA Cardiol. 2017;2:775–81.CrossRefGoogle Scholar
  31. 31.
    Sternlicht H, Bakris GL. Management of hypertension in diabetic nephropathy: how low should we go? Blood Purif. 2016;41:139–43.CrossRefGoogle Scholar
  32. 32.
    Ruiz-Hurtado G, Sarafidis P, Fernández-Alfonso MS, Waeber B, Ruilope LM. Global cardiovascular protection in chronic kidney disease. Nat Rev Cardiol. 2016;13:603–8.CrossRefGoogle Scholar
  33. 33.
    Cerezo C, Ruilope LM, Segura J, et al. Microalbuminuria breakthrough under chronic renin-angiotensin-aldosterone system suppression. J Hypertens. 2012;30:204–9.CrossRefGoogle Scholar
  34. 34.
    Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.CrossRefGoogle Scholar
  35. 35.
    Wanner C, Inzucchi SE, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:1801–2.CrossRefGoogle Scholar
  36. 36.
    Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.CrossRefGoogle Scholar
  37. 37.
    Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.CrossRefGoogle Scholar
  38. 38.
    Mann JFE, Ørsted DD, Brown-Frandsen K, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017;377:839–48.CrossRefGoogle Scholar
  39. 39.
    Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44.CrossRefGoogle Scholar
  40. 40.
    Sarafidis PA, Lazaridis AA, Ruiz-Hurtado G, Ruilope LM. Blood pressure reduction in diabetes: lessons from ACCORD, SPRINT and EMPA-REG OUTCOME. Nat Rev Endocrinol. 2017;13:365.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Gema Ruiz-Hurtado
    • 1
  • Luis M. Ruilope
    • 1
    • 2
    • 3
  1. 1.Cardiorenal Translational Laboratory, Institute of Research i+12 and Hypertension Unit and CIBER in Cardiovascular (CIBERCV), Hospital 12 de OctubreMadridSpain
  2. 2.Department of Preventive Medicine and Public HealthUniversidad AutonomaMadridSpain
  3. 3.School of Doctoral Studies and ResearchUniversidad EuropeaMadridSpain

Personalised recommendations