Advertisement

Human Thermoregulation

  • Andreas D. Flouris
Chapter

Abstract

This chapter presents an overview of the general principles of human thermoregulation at the systems level (i.e. the level of architecture and organization) as well as the relevant afferent and efferent thermoeffector pathways in the central and peripheral nervous systems. It focuses primarily on systems and pathways related to autonomic (i.e. involuntary) and behavioural (i.e. voluntary) thermoregulation. These are two entirely different branches of the human thermoregulatory system, sharing the same sensors for detecting changes in thermal homeostasis but having discrete pathways for afferent and efferent information relay, as well as for central (i.e., brain) information processing. The chapter also presents in detail the four major architectural concepts of human thermoregulation that have been proposed since the 1960s and discusses the advantages and limitations of each one for explaining the various phenomena of human thermoregulation.

Keywords

Thermal strain Heat stress Hyperthermia 

References

  1. 1.
    Smith KR, Woodward A, Lemke B, Otto M, Chang CJ, Mance AA, et al. The last summer Olympics? Climate change, health, and work outdoors. Lancet. 2016;388(10045):642–4.CrossRefPubMedGoogle Scholar
  2. 2.
    Flouris AD, Kenny GP. Heat remains unaccounted for in thermal physiology and climate change research. F1000Research. 2017;6:221.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Flouris AD, Piantoni C. Links between thermoregulation and aging in endotherms and ectotherms. Temperature. 2015;2(1):73–85.CrossRefGoogle Scholar
  4. 4.
    Burton AC. The clinical importance of the physiology of temperature regulation. Can Med Assoc J. 1956;75(9):715–20.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Kenny GP, Flouris AD. The human thermoregulatory system and its response to thermal stress. In: Wang F, Gao C, editors. Protective clothing: managing thermal stress. Cambridge: Woodhead Publishing Limited; 2014.Google Scholar
  6. 6.
    Hardy JD. Physiology of temperature regulation. Physiol Rev. 1961;41:521–606.CrossRefPubMedGoogle Scholar
  7. 7.
    Hammel HT. Regulation of internal body temperature. Annu Rev Physiol. 1968;30:641–710.CrossRefPubMedGoogle Scholar
  8. 8.
    Benzinger TH. Heat regulation: homeostasis of central temperature in man. Physiol Rev. 1969;49(4):671–759.CrossRefPubMedGoogle Scholar
  9. 9.
    Flouris AD, Dinas PC, Valente A, Andrade CMB, Kawashita NH, Sakellariou P. Exercise-induced effects on UCP1 expression in classical brown adipose tissue: a systematic review. Horm Mol Biol Clin Invest. 2017;31:2.Google Scholar
  10. 10.
    Sakellariou P, Valente A, Carrillo AE, Metsios GS, Nadolnik L, Jamurtas AZ, et al. Chronic l-menthol-induced browning of white adipose tissue hypothesis: a putative therapeutic regime for combating obesity and improving metabolic health. Med Hypotheses. 2016;93:21–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Valente A, Jamurtas AZ, Koutedakis Y, Flouris AD. Molecular pathways linking non-shivering thermogenesis and obesity: focusing on brown adipose tissue development. Biol Rev Camb Philos Soc. 2014;90:77–88.CrossRefPubMedGoogle Scholar
  12. 12.
    Sato K, Kang WH, Saga K, Sato KT. Biology of sweat glands and their disorders. I. Normal sweat gland function. J Am Acad Dermatol. 1989;20(4):537–63.CrossRefPubMedGoogle Scholar
  13. 13.
    Shibasaki M, Wilson TE, Crandall CG. Neural control and mechanisms of eccrine sweating during heat stress and exercise. J Appl Physiol. 2006;100(5):1692–701.CrossRefPubMedGoogle Scholar
  14. 14.
    Sato K. The physiology, pharmacology, and biochemistry of the eccrine sweat gland. Rev Physiol Biochem Pharmacol. 1977;79:51–131.CrossRefPubMedGoogle Scholar
  15. 15.
    Sato K, Dobson RL. Regional and individual variations in the function of the human eccrine sweat gland. J Invest Dermatol. 1970;54(6):443–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Weiner JS. The regional distribution of sweating. J Physiol. 1945;104(1):32–40.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hertzman AB, Randall WC, Peiss CN, Seckendorf R. Regional rates of evaporation from the skin at various environmental temperatures. J Appl Physiol. 1952;5(4):153–61.CrossRefPubMedGoogle Scholar
  18. 18.
    Park SJ, Tamura T. Distribution of evaporation rate on human body surface. Ann Physiol Anthropol. 1992;11(6):593–609.CrossRefPubMedGoogle Scholar
  19. 19.
    Cotter JD, Taylor NA. The distribution of cutaneous sudomotor and alliesthesial thermosensitivity in mildly heat-stressed humans: an open-loop approach. J Physiol. 2005;565(Pt 1):335–45.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cotter JD, Patterson MJ, Taylor NA. The topography of eccrine sweating in humans during exercise. Eur J Appl Physiol Occup Physiol. 1995;71(6):549–54.CrossRefPubMedGoogle Scholar
  21. 21.
    Taylor NA, Caldwell JN, Mekjavic IB. The sweating foot: local differences in sweat secretion during exercise-induced hyperthermia. Aviat Space Environ Med. 2006;77(10):1020–7.PubMedGoogle Scholar
  22. 22.
    Machado-Moreira CA, Wilmink F, Meijer A, Mekjavic IB, Taylor NA. Local differences in sweat secretion from the head during rest and exercise in the heat. Eur J Appl Physiol. 2008;104(2):257–64.CrossRefPubMedGoogle Scholar
  23. 23.
    Havenith G, Fogarty A, Bartlett R, Smith CJ, Ventenat V. Male and female upper body sweat distribution during running measured with technical absorbents. Eur J Appl Physiol. 2008;104(2):245–55.CrossRefPubMedGoogle Scholar
  24. 24.
    Mack GW, Nadel ER. Body fluid balance during heat stress in humans. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology. Section 4: environmental physiology. New York: Oxford University Press; 1996. p. 187–214.Google Scholar
  25. 25.
    Robinson S, Robinson AH. Chemical composition of sweat. Physiol Rev. 1954;34(2):202–20.CrossRefPubMedGoogle Scholar
  26. 26.
    Wenger CB. Heat of evaporation of sweat: thermodynamic considerations. J Appl Physiol. 1972;32(4):456–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Lossius K, Eriksen M, Walløe L. Fluctuations in blood flow to acral skin in humans: connection with heart rate and blood pressure variability. J Physiol. 1993;460:641–55.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Brubaker PH, Kaminsky LA, Whaley MH. Coronary artery disease: essentials of prevention and rehabilitation programs. Champaign: Human Kinetics; 2002.Google Scholar
  29. 29.
    Kellogg DL Jr. In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. J Appl Physiol. 2006;100(5):1709–18.CrossRefPubMedGoogle Scholar
  30. 30.
    Kellogg DL Jr, Johnson JM, Kosiba WA. Selective abolition of adrenergic vasoconstrictor responses in skin by local iontophoresis of bretylium. Am J Phys. 1989;257(5 Pt 2):H1599–606.Google Scholar
  31. 31.
    Roddie IC, Shepherd JT, Whelan RF. The contribution of constrictor and dilator nerves to the skin vasodilatation during body heating. J Physiol. 1957;136(3):489–97.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Edholm OG, Fox RH, Macpherson RK. Vasomotor control of the cutaneous blood vessels in the human forearm. J Physiol. 1957;139(3):455–65.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Flouris AD. Functional architecture of behavioural thermoregulation. Eur J Appl Physiol. 2010;111(1):1–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Schlader ZJ, Stannard SR, Mundel T. Human thermoregulatory behavior during rest and exercise - a prospective review. Physiol Behav. 2010;99(3):269–75.CrossRefPubMedGoogle Scholar
  35. 35.
    Flouris AD, Schlader ZJ. Human behavioral thermoregulation during exercise in the heat. Scand J Med Sci Sports. 2015;25(Suppl 1):52–64.CrossRefPubMedGoogle Scholar
  36. 36.
    Flouris AD. Functional architecture of behavioural thermoregulation. Eur J Appl Physiol. 2011;111(1):1–8.CrossRefPubMedGoogle Scholar
  37. 37.
    MacDougall JD, Reddan WG, Layton CR, Dempsey JA. Effects of metabolic hyperthermia on performance during heavy prolonged exercise. J Appl Physiol. 1974;36(5):538–44.CrossRefPubMedGoogle Scholar
  38. 38.
    Galloway SD, Maughan RJ. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc. 1997;29(9):1240–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Parkin JM, Carey MF, Zhao S, Febbraio MA. Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. J Appl Physiol. 1999;86(3):902–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Gonzalez-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol. 1999;86(3):1032–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Ely MR, Cheuvront SN, Montain SJ. Neither cloud cover nor low solar loads are associated with fast marathon performance. Med Sci Sports Exerc. 2007;39(11):2029–35.CrossRefPubMedGoogle Scholar
  42. 42.
    Ely MR, Cheuvront SN, Roberts WO, Montain SJ. Impact of weather on marathon-running performance. Med Sci Sports Exerc. 2007;39(3):487–93.CrossRefPubMedGoogle Scholar
  43. 43.
    Ely MR, Martin DE, Cheuvront SN, Montain SJ. Effect of ambient temperature on marathon pacing is dependent on runner ability. Med Sci Sports Exerc. 2008;40(9):1675–80.CrossRefPubMedGoogle Scholar
  44. 44.
    Vihma T. Effects of weather on the performance of marathon runners. Int J Biometeorol. 2010;54(3):297–306.CrossRefPubMedGoogle Scholar
  45. 45.
    Wegelin JA, Hoffman MD. Variables associated with odds of finishing and finish time in a 161-km ultramarathon. Eur J Appl Physiol. 2011;111(1):145–53.CrossRefPubMedGoogle Scholar
  46. 46.
    Abbiss CR, Burnett A, Nosaka K, Green JP, Foster JK, Laursen PB. Effect of hot versus cold climates on power output, muscle activation, and perceived fatigue during a dynamic 100-km cycling trial. J Sports Sci. 2010;28(2):117–25.CrossRefPubMedGoogle Scholar
  47. 47.
    Altareki N, Drust B, Atkinson G, Cable T, Gregson W. Effects of environmental heat stress (35 degrees C) with simulated air movement on the thermoregulatory responses during a 4-km cycling time trial. Int J Sports Med. 2009;30(1):9–15.CrossRefPubMedGoogle Scholar
  48. 48.
    Ely BR, Cheuvront SN, Kenefick RW, Sawka MN. Aerobic performance is degraded, despite modest hyperthermia, in hot environments. Med Sci Sports Exerc. 2010;42(1):135–41.CrossRefPubMedGoogle Scholar
  49. 49.
    Ely BR, Ely MR, Cheuvront SN, Kenefick RW, Degroot DW, Montain SJ. Evidence against a 40 degrees C core temperature threshold for fatigue in humans. J Appl Physiol. 2009;107(5):1519–25.CrossRefPubMedGoogle Scholar
  50. 50.
    Periard JD, Cramer MN, Chapman PG, Caillaud C, Thompson MW. Cardiovascular strain impairs prolonged self-paced exercise in the heat. Exp Physiol. 2011;96(2):134–44.CrossRefPubMedGoogle Scholar
  51. 51.
    Tatterson AJ, Hahn AG, Martin DT, Febbraio MA. Effects of heat stress on physiological responses and exercise performance in elite cyclists. J Sci Med Sport. 2000;3(2):186–93.CrossRefPubMedGoogle Scholar
  52. 52.
    Tucker R, Rauch L, Harley YX, Noakes TD. Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflugers Arch. 2004;448(4):422–30.CrossRefPubMedGoogle Scholar
  53. 53.
    Schlader ZJ, Stannard SR, Mundel T. Evidence for thermoregulatory behavior during self-paced exercise in the heat. J Therm Biol. 2011;36:390–6.CrossRefGoogle Scholar
  54. 54.
    Schlader ZJ, Stannard SR, Mundel T. Is peak oxygen uptake a determinant of moderate-duration self-paced exercise performance in the heat? Appl Physiol Nutr Metab. 2011;36(6):863–72.CrossRefPubMedGoogle Scholar
  55. 55.
    Tucker R, Marle T, Lambert EV, Noakes TD. The rate of heat storage mediates an anticipatory reduction in exercise intensity during cycling at a fixed rating of perceived exertion. J Physiol. 2006;574(Pt 3):905–15.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lorenzo S, Halliwill JR, Sawka MN, Minson CT. Heat acclimation improves exercise performance. J Appl Physiol. 2010;109(4):1140–7.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Schlader ZJ, Raman A, Morton RH, Stannard SR, Mundel T. Exercise modality modulates body temperature regulation during exercise in uncompensable heat stress. Eur J Appl Physiol. 2011;111(5):757–66.CrossRefPubMedGoogle Scholar
  58. 58.
    Cheuvront SN, Kenefick RW, Montain SJ, Sawka MN. Mechanisms of aerobic performance impairment with heat stress and dehydration. J Appl Physiol. 2010;109(6):1989–95.CrossRefPubMedGoogle Scholar
  59. 59.
    Sawka MN, Cheuvront SN, Kenefick RW. High skin temperature and hypohydration impair aerobic performance. Exp Physiol. 2012;97(3):327–32.CrossRefPubMedGoogle Scholar
  60. 60.
    Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr Physiol. 2011;1(4):1883–928.CrossRefPubMedGoogle Scholar
  61. 61.
    Periard JD, Racinais S. Self-paced exercise in hot and cool conditions is associated with the maintenance of % VO2 peak within a narrow range. J Appl Physiol. 2015;118(10):1258–65.CrossRefPubMedGoogle Scholar
  62. 62.
    Pandolf KB. Differentiated ratings of perceived exertion during physical exercise. Med Sci Sports Exerc. 1982;14(5):397–405.CrossRefPubMedGoogle Scholar
  63. 63.
    Schlader ZJ, Simmons SE, Stannard SR, Mundel T. The independent roles of temperature and thermal perception in the control of human thermoregulatory behavior. Physiol Behav. 2011;103(2):217–24.CrossRefPubMedGoogle Scholar
  64. 64.
    Cotter JD, Sleivert GG, Roberts WS, Febbraio MA. Effect of pre-cooling, with and without thigh cooling, on strain and endurance exercise performance in the heat. Comp Biochem Physiol A Mol Integr Physiol. 2001;128(4):667–77.CrossRefPubMedGoogle Scholar
  65. 65.
    Gonzalez-Alonso J, Calbet JAL. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation. 2003;107(6):824–30.CrossRefPubMedGoogle Scholar
  66. 66.
    Rowell LB, Marx HJ, Bruce RA, Conn RD, Kusumi F. Reductions in cardiac output, central blood volume, and stroke volume with thermal stress in normal men during exercise. J Clin Invest. 1966;45(11):1801–16.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Arngrimsson SA, Petitt DS, Borrani F, Skinner KA, Cureton KJ. Hyperthermia and maximal oxygen uptake in men and women. Eur J Appl Physiol. 2004;92(4-5):524–32.CrossRefPubMedGoogle Scholar
  68. 68.
    Arngrimsson SA, Stewart DJ, Borrani F, Skinner KA, Cureton KJ. Relation of heart rate to percent VO2 peak during submaximal exercise in the heat. J Appl Physiol. 2003;94(3):1162–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Wingo JE, Lafrenz AJ, Ganio MS, Edwards GL, Cureton KJ. Cardiovascular drift is related to reduced maximal oxygen uptake during heat stress. Med Sci Sports Exerc. 2005;37(2):248–55.CrossRefPubMedGoogle Scholar
  70. 70.
    Berry MJ, Weyrich AS, Robergs RA, Krause KM, Ingalls CP. Ratings of perceived exertion in individuals with varying fitness levels during walking and running. Eur J Appl Physiol. 1989;58(5):494–9.CrossRefGoogle Scholar
  71. 71.
    Pandolf KB, Billings DS, Drolet LL, Pimental NA, Sawka MN. Differentiated ratings of perceived exertion and various physiological-responses during prolonged upper and lower body exercise. Eur J Appl Physiol. 1984;53(1):5–11.CrossRefGoogle Scholar
  72. 72.
    Hartley GL, Flouris AD, Plyley MJ, Cheung SS. The effect of a covert manipulation of ambient temperature on heat storage and voluntary exercise intensity. Physiol Behav. 2012;105(5):1194–201.CrossRefPubMedGoogle Scholar
  73. 73.
    Barwood MJ, Corbett J, White D, James J. Early change in thermal perception is not a driver of anticipatory exercise pacing in the heat. Br J Sports Med. 2012;46(13):936–42.CrossRefPubMedGoogle Scholar
  74. 74.
    Fink GD. Hypothesis: the systemic circulation as a regulated free-market economy. A new approach for understanding the long-term control of blood pressure. Clin Exp Pharmacol Physiol. 2005;32(5-6):377–83.CrossRefPubMedGoogle Scholar
  75. 75.
    Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M. Heat-evoked activation of the ion channel, TRPV4. J Neurosci. 2002;22(15):6408–14.CrossRefPubMedGoogle Scholar
  76. 76.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–24.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Feng Q. Temperature sensing by thermal TRP channels: thermodynamic basis and molecular insights. Curr Top Membr. 2014;74:19–50.CrossRefPubMedGoogle Scholar
  78. 78.
    Caterina MJ. Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R64–76.CrossRefPubMedGoogle Scholar
  79. 79.
    Valente A, Carrillo AE, Tzatzarakis MN, Vakonaki E, Tsatsakis AM, Kenny GP, et al. The absorption and metabolism of a single L-menthol oral versus skin administration: effects on thermogenesis and metabolic rate. Food Chem Toxicol. 2015;86:262–73.CrossRefPubMedGoogle Scholar
  80. 80.
    Yao J, Liu B, Qin F. Kinetic and energetic analysis of thermally activated TRPV1 channels. Biophys J. 2010;99(6):1743–53.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Yao J, Liu B, Qin F. Pore turret of thermal TRP channels is not essential for temperature sensing. Proc Natl Acad Sci U S A. 2010;107(32):E125.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Yao J, Liu B, Qin F. Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proc Natl Acad Sci U S A. 2011;108(27):11109–14.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, et al. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron. 2011;70(3):482–94.CrossRefPubMedGoogle Scholar
  84. 84.
    Knowlton WM, Bifolck-Fisher A, Bautista DM, McKemy DD. TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain. 2010;150(2):340–50.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330(6000):55–60.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441(7090):179–85.CrossRefPubMedGoogle Scholar
  87. 87.
    Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science. 2006;312(5777):1220–3.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 2008;455(7217):1210–5.CrossRefPubMedGoogle Scholar
  89. 89.
    Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 2008;322(5901):590–4.CrossRefPubMedGoogle Scholar
  90. 90.
    Schroeder BC, Cheng T, Jan YN, Jan LY. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell. 2008;134(6):1019–29.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Craig AD. Significance of the insula for the evolution of human awareness of feelings from the body. Ann N Y Acad Sci. 2011;1225:72–82.CrossRefPubMedGoogle Scholar
  92. 92.
    Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3(8):655–66.CrossRefPubMedGoogle Scholar
  93. 93.
    Craig AD. Cooling, pain, and other feelings from the body in relation to the autonomic nervous system. Handb Clin Neurol. 2013;117:103–9.CrossRefPubMedGoogle Scholar
  94. 94.
    Farrell MJ. Regional brain responses in humans during body heating and cooling. Temperature. 2016;3(2):220–31.CrossRefGoogle Scholar
  95. 95.
    Hammel HT, Hardy JD, Fusco MM. Thermoregulatory responses to hypothalamic cooling in unanesthetized dogs. Am J Phys. 1960;198:481–6.CrossRefGoogle Scholar
  96. 96.
    Hammel HT, Jackson DC, Stolwijk JA, Hardy JD, Stromme SB. Temperature regulation by hypothalamic proportional control with an adjustable set point. J Appl Physiol. 1963;18:1146–54.CrossRefPubMedGoogle Scholar
  97. 97.
    Farrell MJ, Trevaks D, McAllen RM. Preoptic activation and connectivity during thermal sweating in humans. Temperature. 2014;1(2):135–41.CrossRefGoogle Scholar
  98. 98.
    Farrell MJ, Trevaks D, Taylor NA, McAllen RM. Regional brain responses associated with thermogenic and psychogenic sweating events in humans. J Neurophysiol. 2015;114(5):2578–87.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Low PA. Evaluation of sudomotor function. Clin Neurophysiol. 2004;115(7):1506–13.CrossRefPubMedGoogle Scholar
  100. 100.
    Nakamura K, Matsumura K, Hubschle T, Nakamura Y, Hioki H, Fujiyama F, et al. Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. J Neurosci. 2004;24(23):5370–80.CrossRefPubMedGoogle Scholar
  101. 101.
    Kennedy WR, Wendelschafer-Crabb G, Brelje TC. Innervation and vasculature of human sweat glands: an immunohistochemistry-laser scanning confocal fluorescence microscopy study. J Neurosci. 1994;14(11 Pt 2):6825–33.CrossRefPubMedGoogle Scholar
  102. 102.
    Torres NE, Zollman PJ, Low PA. Characterization of muscarinic receptor subtype of rat eccrine sweat gland by autoradiography. Brain Res. 1991;550(1):129–32.CrossRefPubMedGoogle Scholar
  103. 103.
    Kondo N, Shibasaki M, Aoki K, Koga S, Inoue Y, Crandall CG. Function of human eccrine sweat glands during dynamic exercise and passive heat stress. J Appl Physiol. 2001;90(5):1877–81.CrossRefPubMedGoogle Scholar
  104. 104.
    Shibasaki M, Crandall CG. Effect of local acetylcholinesterase inhibition on sweat rate in humans. J Appl Physiol. 2001;90(3):757–62.CrossRefPubMedGoogle Scholar
  105. 105.
    Welch G, Foote KM, Hansen C, Mack GW. Nonselective NOS inhibition blunts the sweat response to exercise in a warm environment. J Appl Physiol. 2009;106(3):796–803.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Nagashima K, Nakai S, Tanaka M, Kanosue K. Neuronal circuitries involved in thermoregulation. Auton Neurosci. 2000;85(1-3):18–25.CrossRefPubMedGoogle Scholar
  107. 107.
    Romanovsky AA. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R37–46.CrossRefPubMedGoogle Scholar
  108. 108.
    Bamshad M, Song CK, Bartness TJ. CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am J Phys. 1999;276(6 Pt 2):R1569–78.Google Scholar
  109. 109.
    Cano G, Passerin AM, Schiltz JC, Card JP, Morrison SF, Sved AF. Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J Comp Neurol. 2003;460(3):303–26.CrossRefPubMedGoogle Scholar
  110. 110.
    Oldfield BJ, Giles ME, Watson A, Anderson C, Colvill LM, McKinley MJ. The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience. 2002;110(3):515–26.CrossRefPubMedGoogle Scholar
  111. 111.
    Kamijo Y, Lee K, Mack GW. Active cutaneous vasodilation in resting humans during mild heat stress. J Appl Physiol. 2005;98(3):829–37.CrossRefPubMedGoogle Scholar
  112. 112.
    Kenney WL, Johnson JM. Control of skin blood flow during exercise. Med Sci Sports Exerc. 1992;24(3):303–12.CrossRefPubMedGoogle Scholar
  113. 113.
    Pawelcyzk JA. Neural control of skin and muscle blood flow during exercise and thermal stress. In: Gisolfi CV, Lamb DR, Nadel ER, editors. Perspectives in exercise science and sports medicine. Volume 6: exercise, heat, and thermoregulation. Dubuque: WCB Brown and Benchmark; 1993. p. 119–77.Google Scholar
  114. 114.
    Wilkins BW, Holowatz LA, Wong BJ, Minson CT. Nitric oxide is not permissive for cutaneous active vasodilatation in humans. J Physiol. 2003;548(Pt 3):963–9.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Kellogg DL Jr, Zhao JL, Friel C, Roman LJ. Nitric oxide concentration increases in the cutaneous interstitial space during heat stress in humans. J Appl Physiol. 2003;94(5):1971–7.CrossRefPubMedGoogle Scholar
  116. 116.
    Kellogg DL Jr, Crandall CG, Liu Y, Charkoudian N, Johnson JM. Nitric oxide and cutaneous active vasodilation during heat stress in humans. J Appl Physiol. 1998;85(3):824–9.CrossRefPubMedGoogle Scholar
  117. 117.
    Kellogg DL Jr, Liu Y, Kosiba IF, O'Donnell D. Role of nitric oxide in the vascular effects of local warming of the skin in humans. J Appl Physiol. 1999;86(4):1185–90.CrossRefPubMedGoogle Scholar
  118. 118.
    Shibasaki M, Wilson TE, Cui J, Crandall CG. Acetylcholine released from cholinergic nerves contributes to cutaneous vasodilation during heat stress. J Appl Physiol. 2002;93(6):1947–51.CrossRefPubMedGoogle Scholar
  119. 119.
    McCord GR, Cracowski JL, Minson CT. Prostanoids contribute to cutaneous active vasodilation in humans. Am J Physiol Regul Integr Comp Physiol. 2006;291(3):R596–602.CrossRefPubMedGoogle Scholar
  120. 120.
    Bennett LA, Johnson JM, Stephens DP, Saad AR, Kellogg DL Jr. Evidence for a role for vasoactive intestinal peptide in active vasodilatation in the cutaneous vasculature of humans. J Physiol. 2003;552(Pt 1):223–32.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Wong BJ, Minson CT. Neurokinin-1 receptor desensitization attenuates cutaneous active vasodilatation in humans. J Physiol. 2006;577(Pt 3):1043–51.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Wong BJ, Wilkins BW, Minson CT. H1 but not H2 histamine receptor activation contributes to the rise in skin blood flow during whole body heating in humans. J Physiol. 2004;560(Pt 3):941–8.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Heimer L, Van Hoesen GW. The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev. 2006;30(2):126–47.CrossRefPubMedGoogle Scholar
  124. 124.
    Nunneley SA, Martin CC, Slauson JW, Hearon CM, Nickerson LD, Mason PA. Changes in regional cerebral metabolism during systemic hyperthermia in humans. J Appl Physiol. 2002;92(2):846–51.CrossRefPubMedGoogle Scholar
  125. 125.
    Kalivas PW, Nemeroff CB, Miller JS, Prange AJ Jr. Microinjection of neurotensin into the ventral tegmental area produces hypothermia: evaluation of dopaminergic mediation. Brain Res. 1985;326(2):219–27.CrossRefPubMedGoogle Scholar
  126. 126.
    Smith JE, Jansen AS, Gilbey MP, Loewy AD. CNS cell groups projecting to sympathetic outflow of tail artery: neural circuits involved in heat loss in the rat. Brain Res. 1998;786(1-2):153–64.CrossRefPubMedGoogle Scholar
  127. 127.
    Zhang YH, Hosono T, Yanase-Fujiwara M, Chen XM, Kanosue K. Effect of midbrain stimulations on thermoregulatory vasomotor responses in rats. J Physiol. 1997;503(Pt 1):177–86.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Fechir M, Klega A, Buchholz HG, Pfeifer N, Balon S, Schlereth T, et al. Cortical control of thermoregulatory sympathetic activation. Eur J Neurosci. 2010;31(11):2101–11.CrossRefPubMedGoogle Scholar
  129. 129.
    McAllen RM, Tanaka M, Ootsuka Y, McKinley MJ. Multiple thermoregulatory effectors with independent central controls. Eur J Appl Physiol. 2010;109(1):27–33.CrossRefPubMedGoogle Scholar
  130. 130.
    Farrell MJ, Trevaks D, Taylor NA, McAllen RM. Brain stem representation of thermal and psychogenic sweating in humans. Am J Physiol Regul Integr Comp Physiol. 2013;304(10):R810–7.CrossRefPubMedGoogle Scholar
  131. 131.
    Davison MA, Koss MC. Brainstem loci for activation of electrodermal response in the cat. Am J Phys. 1975;229(4):930–4.CrossRefGoogle Scholar
  132. 132.
    McAllen RM. Action and specificity of ventral medullary vasopressor neurones in the cat. Neuroscience. 1986;18(1):51–9.CrossRefPubMedGoogle Scholar
  133. 133.
    Shafton AD, McAllen RM. Location of cat brain stem neurons that drive sweating. Am J Physiol Regul Integr Comp Physiol. 2013;304(10):R804–9.CrossRefPubMedGoogle Scholar
  134. 134.
    Egan GF, Johnson J, Farrell M, McAllen R, Zamarripa F, McKinley MJ, et al. Cortical, thalamic, and hypothalamic responses to cooling and warming the skin in awake humans: a positron-emission tomography study. Proc Natl Acad Sci U S A. 2005;102(14):5262–7.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Farrell MJ, Johnson J, McAllen RM, Zamarripa F, Denton DA, Fox PT, et al. Brain activity associated with ratings of the hedonic component of thermal sensation during whole-body warming and cooling. J Therm Biol. 2011;36:57–63.CrossRefGoogle Scholar
  136. 136.
    Rolls ET, Grabenhorst F, Parris BA. Warm pleasant feelings in the brain. NeuroImage. 2008;41(4):1504–13.CrossRefPubMedGoogle Scholar
  137. 137.
    Kulkarni B, Bentley DE, Elliott R, Youell P, Watson A, Derbyshire SW, et al. Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems. Eur J Neurosci. 2005;21(11):3133–42.CrossRefPubMedGoogle Scholar
  138. 138.
    Fredrikson M, Furmark T, Olsson MT, Fischer H, Andersson J, Langstrom B. Functional neuroanatomical correlates of electrodermal activity: a positron emission tomographic study. Psychophysiology. 1998;35(2):179–85.CrossRefPubMedGoogle Scholar
  139. 139.
    Nagai Y, Critchley HD, Featherstone E, Trimble MR, Dolan RJ. Activity in ventromedial prefrontal cortex covaries with sympathetic skin conductance level: a physiological account of a “default mode” of brain function. NeuroImage. 2004;22(1):243–51.CrossRefPubMedGoogle Scholar
  140. 140.
    Patterson JC, Ungerleider LG, Bandettini PA. Task-independent functional brain activity correlation with skin conductance changes: an fMRI study. NeuroImage. 2002;17(4):1797–806.CrossRefPubMedGoogle Scholar
  141. 141.
    Williams LM, Brammer MJ, Skerrett D, Lagopolous J, Rennie C, Kozek K, et al. The neural correlates of orienting: an integration of fMRI and skin conductance orienting. Neuroreport. 2000;11(13):3011–5.CrossRefPubMedGoogle Scholar
  142. 142.
    Rothwell JC. Overview of neurophysiology of movement control. Clin Neurol Neurosurg. 2012;114(5):432–5.CrossRefPubMedGoogle Scholar
  143. 143.
    Baker SN. The primate reticulospinal tract, hand function and functional recovery. J Physiol. 2011;589(Pt 23):5603–12.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Wissler EH. A quantitative assessment of skin blood flow in humans. Eur J Appl Physiol. 2008;104(2):145–57.CrossRefPubMedGoogle Scholar
  145. 145.
    Wenger CB, Bailey RB, Roberts MF, Nadel ER. Interaction of local and reflex thermal effects in control of forearm blood flow. J Appl Physiol. 1985;58(1):251–7.CrossRefPubMedGoogle Scholar
  146. 146.
    Jessen C. Interaction of body temperatures in control of thermoregulatory effector mechanisms. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology. Section 4: environmental physiology. New York: Oxford University Press; 1996. p. 127–38.Google Scholar
  147. 147.
    Nadel ER, Mitchell JW, Saltin B, Stolwijk JA. Peripheral modifications to the central drive for sweating. J Appl Physiol. 1971;31(6):828–33.CrossRefPubMedGoogle Scholar
  148. 148.
    Nadel ER, Bullard RW, Stolwijk JA. Importance of skin temperature in the regulation of sweating. J Appl Physiol. 1971;31(1):80–7.CrossRefPubMedGoogle Scholar
  149. 149.
    Yoshida T, Nakai S, Yorimoto A, Kawabata T, Morimoto T. Effect of aerobic capacity on sweat rate and fluid intake during outdoor exercise in the heat. Eur J Appl Physiol. 1995;71:235–9.CrossRefGoogle Scholar
  150. 150.
    Flouris AD, Cheung SS. Human conscious response to thermal input is adjusted to changes in mean body temperature. Br J Sports Med. 2008;43(3):199–203.CrossRefPubMedGoogle Scholar
  151. 151.
    Schlader ZJ, Prange HD, Mickleborough TD, Stager JM. Characteristics of the control of human thermoregulatory behavior. Physiol Behav. 2009;98(5):557–62.CrossRefPubMedGoogle Scholar
  152. 152.
    Schlader ZJ, Simmons SE, Stannard SR, Mundel T. Skin temperature as a thermal controller of exercise intensity. Eur J Appl Physiol. 2011;11:1631–9.CrossRefGoogle Scholar
  153. 153.
    Bligh J. A theoretical consideration of the means whereby the mammalian core temperature is defended at a null zone. J Appl Physiol. 2006;100(4):1332–7.CrossRefPubMedGoogle Scholar
  154. 154.
    Gagnon D, Kenny GP. Does sex have an independent effect on thermoeffector responses during exercise in the heat? J Physiol. 2012;590(Pt 23):5963–73.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Simon E, Pierau FK, Taylor DC. Central and peripheral thermal control of effectors in homeothermic temperature regulation. Physiol Rev. 1986;66(2):235–300.CrossRefPubMedGoogle Scholar
  156. 156.
    Simon E. The enigma of deep-body thermosensory specificity. Int J Biometeorol. 2000;44(3):105–20.CrossRefPubMedGoogle Scholar
  157. 157.
    Flouris AD, Cheung SS. Thermometry and calorimetry assessment of sweat response during exercise in the heat. Eur J Appl Physiol. 2010;108(5):905–11.CrossRefPubMedGoogle Scholar
  158. 158.
    Webb P. The physiology of heat regulation. Am J Phys. 1995;268(4 Pt 2):R838–50.Google Scholar
  159. 159.
    Grucza R. Body heat balance in man subjected to endogenous and exogenous heat load. Eur J Appl Physiol Occup Physiol. 1983;51(3):419–33.CrossRefPubMedGoogle Scholar
  160. 160.
    Kenny GP, Groeller H, McGinn R, Flouris AD. Age, human performance, and physical employment standards. Appl Physiol Nutr Metab. 2016;41(6 Suppl 2):S92–S107.CrossRefPubMedGoogle Scholar
  161. 161.
    Kenny GP, Sigal RJ, McGinn R. Body temperature regulation in diabetes. Temperature. 2016;3(1):119–45.CrossRefGoogle Scholar
  162. 162.
    Carrillo AE, Flouris AD, Herry CL, Poirier MP, Boulay P, Dervis S, et al. Heart rate variability during high heat stress: a comparison between young and older adults with and without Type 2 diabetes. Am J Physiol Regul Integr Comp Physiol. 2016;311(4):R669–R75.CrossRefPubMedGoogle Scholar
  163. 163.
    Stapleton JM, Poirier MP, Flouris AD, Boulay P, Sigal RJ, Malcolm J, et al. Aging impairs heat loss, but when does it matter? J Appl Physiol. 2015;118(3):299–309.CrossRefPubMedGoogle Scholar
  164. 164.
    McGinn R, Carter MR, Barrera-Ramirez J, Sigal RJ, Flouris AD, Kenny GP. Does type 1 diabetes alter post-exercise thermoregulatory and cardiovascular function in young adults? Scand J Med Sci Sports. 2015;25(5):e504–14.CrossRefPubMedGoogle Scholar
  165. 165.
    Nagashima K. Central mechanisms for thermoregulation in a hot environment. Ind Health. 2006;44(3):359–67.CrossRefPubMedGoogle Scholar
  166. 166.
    Barbour HG. The effect of direct warming and cooling of the thermoregulatory centers on body temperature (translated from the German title: Die Wirkung unmittelbarer Erwärmung und Abkühlung der Wärmezentra auf die Körpertemperatur). Naunyn-Schmiedebergs Arch. 1912;70:1–26.CrossRefGoogle Scholar
  167. 167.
    Flouris AD. Shaping our understanding of endothermic thermoregulation. Temperature. 2015;2(3):328–9.CrossRefGoogle Scholar
  168. 168.
    Hammel HT, Stromme S, Cornew RW. Proportionality constant for hypothalamic proportional control of metabolism in unanesthetized dog. Life Sci. 1963;12:933–47.CrossRefGoogle Scholar
  169. 169.
    Nakayama T, Hammel HT, Hardy JD, Eisenman JS. Thermal stimulation of electrical activity of single units of the preoptic region. Am J Phys. 1963;204:1122–6.CrossRefGoogle Scholar
  170. 170.
    Hammel HT. Concept of the adjustable set temperature. In: Hardy JD, Gagge AP, Stolwijk JAJ, editors. Physiological and behavioral temperature regulation. Springfield: Charles C. Thomas; 1970. p. 676–83.Google Scholar
  171. 171.
    Hellstrøm B, Hammel HT. Some characteristics of temperature regulation in unanesthetized dog. Am J Phys. 1967;213:547–56.CrossRefGoogle Scholar
  172. 172.
    Heller HC, Hammel HT. CNS control of body temperature during hibernation. Comp Biochem Physiol A. 1972;41(2):349–59.CrossRefPubMedGoogle Scholar
  173. 173.
    Hammel HT, Heller HC, Sharp FR. Probing the rostral brainstem of anesthetized, unanesthetized, and exercising dogs and of hibernating and euthermic ground squirrels. Fed Proc. 1973;32(5):1588–97.PubMedGoogle Scholar
  174. 174.
    Jackson DC, Hammel HT. Hypothalamic “set” temperature decreased in exercising dog. Life Sci. 1963;8:554–63.CrossRefGoogle Scholar
  175. 175.
    Sharp FR, Hammel HT. Effects of fever on salivation response in the resting and exercising dog. Am J Phys. 1972;223(1):77–82.CrossRefGoogle Scholar
  176. 176.
    Simon E, Rautenberg W, Thauer R, Iriki M. Ausloesung thermoregulatorischer Reaktionen durch lokale Kuehlung im Vertebralkanal (Stimulation of thermoregulatory reactions by local cooling within the vertebral canal). Naturwissenschaften. 1963;50:337.CrossRefGoogle Scholar
  177. 177.
    Kanosue K, Nakayama T, Tanaka H, Yanase M, Yasuda H. Modes of action of local hypothalamic and skin thermal stimulation on salivary secretion in rats. J Physiol. 1990;424:459–71.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Kanosue K, Yanase-Fujiwara M, Hosono T. Hypothalamic network for thermoregulatory vasomotor control. Am J Phys. 1994;267(1 Pt 2):R283–8.Google Scholar
  179. 179.
    Kanosue K, Zhang YH, Yanase-Fujiwara M, Hosono T. Hypothalamic network for thermoregulatory shivering. Am J Phys. 1994;267(1 Pt 2):R275–82.Google Scholar
  180. 180.
    Kanosue K, Yoshida K, Maruyama M, Nagashima K. The central organization of the thermoregulatory system. In: Kosaka M, Sugahara T, Schmidt KL, Simon E, editors. Thermotherapy for neoplasia, inflammation, and Pain. Tokyo: Springer; 2001. p. 2–11.CrossRefGoogle Scholar
  181. 181.
    Romanovsky AA. Do fever and anapyrexia exist? Analysis of set point-based definitions. Am J Physiol Regul Integr Comp Physiol. 2004;287(4):R992–5.CrossRefPubMedGoogle Scholar
  182. 182.
    Kobayashi S. Temperature-sensitive neurons in the hypothalamus: a new hypothesis that they act as thermostats, not as transducers. Prog Neurobiol. 1989;32(2):103–35.CrossRefPubMedGoogle Scholar
  183. 183.
    Kobayashi S, Okazawa M, Hori A, Matsumura K, Hosokawa H. Paradigm shift in sensory system - animals do not have sensors. J Therm Biol. 2006;31:19–23.CrossRefGoogle Scholar
  184. 184.
    Kobayashi S. Warm- and cold-sensitive neurons inactive at normal core temperature in rat hypothalamic slices. Brain Res. 1986;362(1):132–9.CrossRefPubMedGoogle Scholar
  185. 185.
    Okazawa M, Takao K, Hori A, Shiraki T, Matsumura K, Kobayashi S. Ionic basis of cold receptors acting as thermostats. J Neurosci. 2002;22(10):3994–4001.CrossRefPubMedGoogle Scholar
  186. 186.
    Romanovsky AA, Ivanov AI, Shimansky YP. Selected contribution: ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality. J Appl Physiol. 2002;92(6):2667–79.CrossRefPubMedGoogle Scholar
  187. 187.
    Mekjavic IB, Eiken O. Contribution of thermal and nonthermal factors to the regulation of body temperature in humans. J Appl Physiol. 2006;100(6):2065–72.CrossRefPubMedGoogle Scholar
  188. 188.
    Bazett HC. Theory of reflex controls to explain regulation of body temperature at rest and during exercise. J Appl Physiol. 1951;4(4):245–62.CrossRefPubMedGoogle Scholar
  189. 189.
    Meade RD, Poirier MP, Flouris AD, Hardcastle SG, Kenny GP. Do the threshold limit values for work in hot conditions adequately protect workers? Med Sci Sports Exerc. 2016;48(6):1187–96.CrossRefPubMedGoogle Scholar
  190. 190.
    Snellen JW. Set point and exercise. In: Bligh J, Moore RE, editors. Essays on temperature regulation. Amsterdam: North Holland; 1972. p. 139–48.Google Scholar
  191. 191.
    Adolph EF. Look at physiological integration. Am J Phys. 1979;237(5):R255–9.Google Scholar
  192. 192.
    Houdas Y, Sauvage A, Bonaventure M, Ledru C, BGuieu JD. Thermal control in man: regulation of central temperature or adjustments of heat exchanges by servomechanisms? J Dyn Syst Meas Control. 1973;95:331–5.CrossRefGoogle Scholar
  193. 193.
    Aschoff J, Heise A. Thermal conductance in man: its dependence on time of day and on ambient temperature. In: Itoh S, Ogata K, Yoshimura H, editors. Advances in climatic physiology. Tokyo: Igaku Shoin; 1972. p. 334–48.CrossRefGoogle Scholar
  194. 194.
    Krauchi K, Wirz-Justice A. Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. Am J Phys. 1994;267(3 Pt 2):R819–29.Google Scholar
  195. 195.
    Robinson EL, Demaria-Pesce VH, Fuller CA. Circadian rhythms of thermoregulation in the squirrel monkey (Saimiri sciureus). Am J Phys. 1993;265(4 Pt 2):R781–5.Google Scholar
  196. 196.
    Aschoff J, Pohl H. Thermal conductance in man: its dependence on time of day and on ambient temperature. In: Itoh S, Ogata K, Yoshimura H, editors. Advances in climatic physiology. Tokyo: Igaku Shoin; 1972. p. 334–48.CrossRefGoogle Scholar
  197. 197.
    Webb P. Continuous thermal comfort in a suit calorimeter. In: Durand J, Raynaud J, editors. Thermal comfort: physiological and psychological bases. Paris: INSERM; 1979. p. 177–85.Google Scholar
  198. 198.
    Webb P, Annis JF, Troutman SJ Jr. Energy balance in man measured by direct and indirect calorimetry. Am J Clin Nutr. 1980;33(6):1287–98.CrossRefPubMedGoogle Scholar
  199. 199.
    Tikuisis P. Heat balance precedes stabilization of body temperatures during cold water immersion. J Appl Physiol. 2003;95(1):89–96.CrossRefPubMedGoogle Scholar
  200. 200.
    Kerslake DM. The stress of hot environments. Cambridge: Cambridge University Press; 1972.Google Scholar
  201. 201.
    Veghte JH, Webb P. Body cooling and response to heat. J Appl Physiol. 1961;16:235–8.CrossRefPubMedGoogle Scholar
  202. 202.
    Webb P. Rewarming after diving in cold water. Aerosp Med. 1973;44(10):1152–7.PubMedGoogle Scholar
  203. 203.
    Ereth MH, Lennon RL, Sessler DI. Limited heat transfer between thermal compartments during rewarming in vasoconstricted patients. Aviat Space Environ Med. 1992;63(12):1065–9.PubMedGoogle Scholar
  204. 204.
    Kruk B, Pekkarinen H, Harri M, Manninen K, Hanninen O. Thermoregulatory responses to exercise at low ambient temperature performed after precooling or preheating procedures. Eur J Appl Physiol Occup Physiol. 1990;59(6):416–20.CrossRefPubMedGoogle Scholar
  205. 205.
    Webb P. Heat storage and body temperature during cooling and rewarming. Eur J Appl Physiol Occup Physiol. 1993;66(1):18–24.CrossRefPubMedGoogle Scholar
  206. 206.
    Ebbecke U. Uber die Temperaturempfindungen in ihrer Abhängigkeit von der Hautdurchblutung und von den Reflexzentren. Pfluegers Arch. 1917;169:385–462.Google Scholar
  207. 207.
    Nielsen B. Thermoregulation in rest and exercise. Acta Physiol Scand Suppl. 1969;323:1–74.CrossRefPubMedGoogle Scholar
  208. 208.
    Webb P. Temperatures of skin, subcutaneous tissue, muscle and core in resting men in cold, comfortable and hot conditions. Eur J Appl Physiol Occup Physiol. 1992;64(5):471–6.CrossRefPubMedGoogle Scholar
  209. 209.
    Ivanov KP. The location and function of different skin thermoreceptors. In: Bligh J, Voigt K, editors. Thermoreception and temperature regulation. Berlin: Springer; 1990. p. 37–43.CrossRefGoogle Scholar
  210. 210.
    Ivanov KP, Dymnikova L, Danilova N. The hypothalamus neuron’s response to the signals from surface and deep skin thermoreceptors. J Therm Biol. 1987;12:289–93.CrossRefGoogle Scholar
  211. 211.
    Simon E. Deep-body thermosensitivity: Another look. A tribute to Harold Theodore (Ted) Hammel (1921–2005). J Therm Biol. 2006;31:4–18.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andreas D. Flouris
    • 1
  1. 1.FAME Laboratory, Department of Exercise ScienceUniversity of ThessalyTrikalaGreece

Personalised recommendations