Assistive Mobile Technologies for Health Monitoring and Brain–Computer Interface for Patients with Motor Impairments

  • Raluca Maria Aileni
  • George Suciu
  • Victor Suciu
  • Jean Ciurea
  • Pasca Sever
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)


This book chapter presents the importance of mobile solutions based on body sensor network (BSN) architecture for health monitoring in case of motor-impaired people. In this work, we present a noninvasive system based on mobile technology that allows biomedical signal monitoring by wearable electrodes. The concept of brain–computer interfaces (BCIs) is the ultimate trend for the entertainment industry (gaming), but this technology has potential by providing signal alerts to motor-impaired people (epilepsy or to enable communication). The mobile technologies allow developing the private cloud for tracking data from biomedical sensors and temporary data storage. Motor impairment is total or partial loss of function of a body part that can be translated to muscle weakness, lack of muscle control, or total paralysis. In case of people with motor impairments, monitoring at home involves a monitoring system based on body sensor network (BSN), Internet of Things (IoT), and feedback from doctors. Such a system may lead to reduced costs of hospitalization.


  1. 1.
    Naomi E et al (2008) The handy anatomy answer book. Visible Ink Press Publisher, US Google Scholar
  2. 2.
    Schwartz BA et al (2006) Brain-controlled interfaces: movement restoration with neural prothetics. Neuron J 52(1):2-5-20CrossRefGoogle Scholar
  3. 3.
    Daly JJ, Huggins JE (2015) Brain-computer interface: current and emerging rehabilitation applications. Arch Phys Med Rehabil 96(30):S1–S7CrossRefGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
    DJ DG et al (2013) Bone and skeletal muscle: neighbours with close ties. J Bone Mineral Res: Off J Am Soc Bone Mineral Res 28(7):1509–1518CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Gold MS et al (2009) Methamphetamine- and trauma-induced brain inju-ries: comparative cellular and molecular neurobiological substrates. Biol Psychiatr 66(2):118–127CrossRefGoogle Scholar
  11. 11.
    Blyth BJ, Bazarian JJ (2010) Traumatic alterations in consciousness: traumatic brain injury. Emerg Med Clin North Am 28(3):571–594CrossRefGoogle Scholar
  12. 12.
    Ding K et al (2016) Epilepsy after traumatic brain injury. In: Laskowitz D, Grant G (eds) Translational research in traumatic brain injury. CRC Press/Taylor and Francis Group, Boca Raton Chapter 14, Available from: Google Scholar
  13. 13.
    Walker BN, Vujic A (2017) Engineering Psych. Seminar on Assistive Technology PSYC 8040/CS 8803-AT (2017). Motor Disabilities CS 8803, available:
  14. 14.
    Dobkin BH (2009) Motor rehabilitation after stroke, traumatic brain, and spi- nal cord injury: common denominators within recent clinical trials. Curr Opin Neurol 22(6):563–569CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Finnerup N (2016) Neuropathic pain in spinal cord injury, ISCoS, UK, 2016Google Scholar
  17. 17.
    Morganti - Kossmann C et al (2012) Traumatic brain and spinal cord injury: challenges and developments. Cambridge University Press, Cambridge, pp 1–215CrossRefGoogle Scholar
  18. 18.
  19. 19.
  20. 20.
  21. 21.
  22. 22.
  23. 23.
    Barrué C (2012) Personalization and Shared Autonomy in Assistive Technol- ogies. Ph. Thesis. Universitat Politècnica de Catalunya. 2012Google Scholar
  24. 24.
    Skejié E, Durek M (2007) Assistive technologies for physically handicapped persons. In: Sobh T (ed) Innovations and advanced techniques in computer and information sciences and engineering. Springer, DordrechtGoogle Scholar
  25. 25.
  26. 26.
    Farooq A (2009) Haptics in kiosks and ATMs for the disabled. University of Tampere, TampereGoogle Scholar
  27. 27.
    Reis CI et al (2017) Internet of things and advanced application in healthcare. ICI-global. USA:2017Google Scholar
  28. 28.
    Arampatzis T et al (2005) A Survey of Applications of Wireless Sensors and Wireless Sensor Networks, Proceedings of the 2005 IEEE International Symposium on Mediterrean Conference on Control and Automation Intelligent Control, Limassol, pp 719–724Google Scholar
  29. 29.
    Islam SMR et al (2015) The internet of things for health care: a comprehensive survey. IEEE Access 3:678–708CrossRefGoogle Scholar
  30. 30.
    Domingo MC (2012) Review: an overview of the internet of things for people with disabilities. J Netw Comput Appl 35(2):1084–8045CrossRefGoogle Scholar
  31. 31.
    Faller J et al (2014) Non-motor tasks improve adaptive brain-computer inter- face performance in users with severe motor impairment. Frontiers in Neuro- science 8:320Google Scholar
  32. 32.
    Pasqualotto E et al (2015) Usability and workload of access technology for people with severe motor impairment: a comparison of brain-computer interfacing and eye tracking. Neurorehabil Neural Repair 29(10):950–957CrossRefGoogle Scholar
  33. 33.
    Nijboer F et al (2008) A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 119(8):1909–1916CrossRefGoogle Scholar
  34. 34.
    Iturrate I et al (2009) A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Transact Robotics 25(3):614–627CrossRefGoogle Scholar
  35. 35.
    Bayliss JD (2003) Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans Neural Syst Rehabil Eng 11(2):113–116MathSciNetCrossRefGoogle Scholar
  36. 36.
    Mugler EM et al (2010) Design and implementation of a P300-based braincomputer interface for controlling an internet browser. IEEE Trans Neural Syst Rehabil Eng 18(6):599–609CrossRefGoogle Scholar
  37. 37.
    Münßinger JI et al (2010) Brain painting: first evaluation of a new brain – computer Interface application with ALS-patients and healthy volunteers. Front Neurosci 4:182CrossRefGoogle Scholar
  38. 38.
    Schalk G et al (2004) BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51(6):1034–1043CrossRefGoogle Scholar
  39. 39.
    Pierce JR (2016) An introduction to information theory: symbols. Signals Noise Courier CorpGoogle Scholar
  40. 40.
    Bangor A et al (2008) An empirical evaluation of the system usability scale. Int J Human–Comp Interact 24(6):574–594CrossRefGoogle Scholar
  41. 41.
    Hart SG, Staveland LE (1988) Development of NASA-TLX (task load index): results of empirical and theoretical research. Adv Psychol 52(C):139–183CrossRefGoogle Scholar
  42. 42.
    Future ready assistive technology: fostering state supports for students with disabilities. Center on Technology and Disability USA.
  43. 43.
    Siburkis LW (2015) Future of personal monitoring devices for epilepsy. AES 2015 Epilepsy and Seizure. Neurology Times.
  44. 44.
    Futurehome AS. Futurehome Android and iOS App.
  45. 45.
  46. 46.
    Field A (2017) A startup that’s (literally) opening doors for wheelchair users. Forbes.
  47. 47.
    Talkitt – Voiceitt
  48. 48.
  49. 49.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Raluca Maria Aileni
    • 1
  • George Suciu
    • 1
  • Victor Suciu
    • 1
  • Jean Ciurea
    • 2
  • Pasca Sever
    • 1
  1. 1.Faculty of Electronics Telecommunication and Information TechnologyPolitehnica University of BucharestBucharestRomania
  2. 2.Neurosurgery DepartmentBagdasar-Arseni HospitalBucharestRomania

Personalised recommendations