Human Somatic Stem Cell Neural Differentiation Potential

  • David J. Eve
  • Paul R. Sanberg
  • Leonora Buzanska
  • Anna Sarnowska
  • Krystyna Domanska-Janik
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 66)


Human somatic stem cells can be identified and isolated from different types of tissues and are grouped here based on their developmental maturation and ability to undergo neural differentiation. The first group will represent afterbirth somatic tissues, which are perinatal stem cells including placental blood and tissue, amniotic fluid and tissue, and umbilical cord blood- and umbilical cord tissue-derived cells. The second group of cells discussed in this chapter is the adult stem cells, generally those in a transient period of development, thus placing them in the special position of transitioning from the perinatal to young somatic tissue, and they include the menstrual blood-, the peripheral blood-, and the bone marrow-derived stem cells.


Placenta Amnion Umbilical cord Blood Bone marrow Neural differentiation 



PRS holds a number of patents for the application of umbilical cord-, menstrual and peripheral blood-, and bone marrow-derived stem cells in the treatment of neurodegenerative disorders.


  1. Acosta SA, Tajiri N, Shinozuka K et al (2014) Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury. PLoS One 9(3):e90953PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adamzyk C, Kachel P, Hoss M et al (2016) Bone tissue engineering using polyetherketoneketone scaffolds combined with autologous mesenchymal stem cells in a sheep calvarial defect model. J Craniomaxillofac Surg 44(8):985–994PubMedCrossRefGoogle Scholar
  3. Ali H, Al-Mulla F (2012) Defining umbilical cord blood stem cells. Stem Cell Discovery 2:15–23CrossRefGoogle Scholar
  4. Aliaghaei A, Gardaneh M, Maghsoudi N et al (2016) Dopaminergic induction of umbilical cord mesenchymal stem cells by conditioned medium of choroid plexus epithelial cells reduces apomorphine-induced rotation in parkinsonian rats. Arch Iran Med 19(8):561–570PubMedGoogle Scholar
  5. Aquino JB (2017) Uncovering the in vivo source of adult neural crest stem cells. Stem Cells Dev 26(5):303–313PubMedCrossRefGoogle Scholar
  6. Arnhold S, Post C, Gluer S et al (2008) Neuronal characteristics of amniotic fluid derived cells after adenoviral transformation. Cell Biol Int 32(12):1559–1566PubMedCrossRefGoogle Scholar
  7. Arnhold S, Gluer S, Hartmann K et al (2011) Amniotic-fluid stem cells: growth dynamics and differentiation potential after a cd-117-based selection procedure. Stem Cells Int 2011:715341PubMedPubMedCentralCrossRefGoogle Scholar
  8. Azedi F, Kazemnejad S, Zarnani AH et al (2014) Differentiation potential of menstrual blood- versus bone marrow-stem cells into glial-like cells. Cell Biol Int 38(5):615–624PubMedCrossRefGoogle Scholar
  9. Azedi F, Kazemnejad S, Zarnani AH et al (2017) Comparative capability of menstrual blood versus bone marrow derived stem cells in neural differentiation. Mol Biol Rep 44(1):169–182PubMedCrossRefGoogle Scholar
  10. Baer PC, Griesche N, Luttmann W et al (2010) Human adipose-derived mesenchymal stem cells in vitro: evaluation of an optimal expansion medium preserving stemness. Cytotherapy 12(1):96–106PubMedCrossRefGoogle Scholar
  11. Bagher Z, Azami M, Ebrahimi-Barough S (2016) Differentiation of Wharton’s jelly-derived mesenchymal stem cells into motor neuron-like cells on three-dimensional collagen-Grafted nanofibers. Mol Neurobiol 53(4):2397–2408PubMedCrossRefGoogle Scholar
  12. Bonaventura G, Chamayou S, Liprino A et al (2015) Different tissue-derived stem cells: a comparison of neural differentiation capability. PLoS One 10(10):e0140790PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bonilla-Porras AR, Velez-Pardo C, Jimenez-Del-Rio M (2017) Fast transdifferentiation of human Wharton’s jelly mesenchymal stem cells into neurospheres and nerve-like cells. J Neurosci Methods 282:52–60PubMedCrossRefGoogle Scholar
  14. Borlongan CV, Kaneko Y, Maki M et al (2010) Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev 19(4):439–452PubMedPubMedCentralCrossRefGoogle Scholar
  15. Boroujeni ME, Gardaneh M, Shahriari MH (2017) Synergy between choroid plexus epithelial cell-conditioned medium and knockout serum replacement converts human adipose-derived stem cells to dopamine-secreting neurons. Rejuvenation Res 20(4):309–319PubMedCrossRefGoogle Scholar
  16. Bossolasco P, Montemurro T, Cova L et al (2006) Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Res 16(4):329–336PubMedCrossRefGoogle Scholar
  17. Buzanska L, Machaj EK, Zablocka B et al (2001) Human cord blood derived neurons, astrocytes and oligodendrocytes. J. Neurochem 78(Suppl. 1):58Google Scholar
  18. Buzanska L, Machaj EK, Zabłocka B et al (2002) Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 115(Pt 10):2131–2138PubMedGoogle Scholar
  19. Buzanska L, Habich A, Jurga M et al (2005) Human cord blood – derived neural stem cell line possible implementation in studying neurotoxicity. Toxicology in Vitro 19:991–999PubMedCrossRefGoogle Scholar
  20. Buzanska L, Jurga M, Stachowiak EK et al (2006) Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Dev 15(3):391–406PubMedCrossRefGoogle Scholar
  21. Buzanska L, Jurga M, Domanska-Janik K (2006a) Neuronal differentiation of human umbilical cord blood neural stem-like cell line. Neurodegener Dis 3(1–2):19–26PubMedCrossRefGoogle Scholar
  22. Buzanska L, Sypecka J, Nerini-Molteni S et al (2009) A human stem cell-based model for identifying adverse effects of organic and inorganic chemicals on the developing nervous system. Stem Cells 27(10):2591–2601PubMedCrossRefPubMedCentralGoogle Scholar
  23. Calzarossa C, Bossolasco P, Besana A et al (2013) Neurorescue effects and stem properties of chorionic villi and amniotic progenitor cells. Neuroscience 234:158–172PubMedCrossRefGoogle Scholar
  24. Castillo-Melendez M, Yawno T, Jenkin G (2013) Stem cell therapy to protect and repair the developing brain: a review of mechanisms of action of cord blood and amnion epithelial derived cells. Front Neurosci 7:194PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen SH, Chang FM, Tsai Y et al (2006) Infusion of human umbilical cord blood cells protect against cerebral ischemia and damage during heatstroke in the rat. Exp Neurol 199(1):67–76PubMedCrossRefGoogle Scholar
  26. Chen H, Zhang Y, Yang Z (2013) Human umbilical cord Wharton’s jelly-derived oligodendrocyte precursor-like cells for axon and myelin sheath regeneration. Neural Regen Res 8(10):890–899PubMedPubMedCentralGoogle Scholar
  27. Chen JY, Mou XZ, Du XC et al (2015) Comparative analysis of biological characteristics of adult mesenchymal stem cells with different tissue origins. Asian Pacific J Trop Med 8(9):739–746CrossRefGoogle Scholar
  28. Cheng LC, Pastrana E, Tavazoie M et al (2009) Mir-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12(4):399–408PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cipriani S, Bonini D, Marchina E et al (2007) Mesenchymal cells from human amniotic fluid survive and migrate after transplantation into adult rat brain. Cell Biol Int 31(8):845–850PubMedCrossRefGoogle Scholar
  30. Dabrowska S, Sypecka J, Jablonska A et al (2018) Neuroprotective potential and paracrine activity of stromal vs. culture-expanded hMSC derived from Wharton jelly under co-cultured with hippocampal organotypic slices. Mol Neurobiol 55(7):6021–6036PubMedCrossRefGoogle Scholar
  31. Datta I, Mishra S, Mohanty L et al (2011) Neuronal plasticity of human Wharton’s jelly mesenchymal stromal cells to the dopaminergic cell type compared with human bone marrow mesenchymal stromal cells. Cytotherapy 13(8):918–932PubMedCrossRefGoogle Scholar
  32. Davies JE, Walker JT, Keating A (2017) Concise review: Wharton’s jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl Med 6(7):1620–1630PubMedPubMedCentralCrossRefGoogle Scholar
  33. De Coppi P, Bartsch G Jr, Siddiqui MM et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106PubMedCrossRefGoogle Scholar
  34. Deng W, Obrocka M, Fischer I et al (2001) In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic amp. Biochem Biophys Res Commun 282(1):148–152PubMedCrossRefGoogle Scholar
  35. Dezawa M (2016) Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of muse cells to tissue regeneration. Cell Transplant 25(5):849–861PubMedCrossRefGoogle Scholar
  36. Dezawa M, Kanno H, Hoshino M et al (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113(12):1701–1710PubMedPubMedCentralCrossRefGoogle Scholar
  37. Divya MS, Roshin GE, Divya TS et al (2012) Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res Ther 3(6):57PubMedPubMedCentralCrossRefGoogle Scholar
  38. Domanska-Janik K, Buzanska L, Lukomska B (2008) A novel, neural potential of non-hematopoietic human umbilical cord blood stem cells. Int J Dev Biol 52(2–3):237–248PubMedCrossRefGoogle Scholar
  39. Donaldson AE, Cai J, Yang M et al (2009) Human amniotic fluid stem cells do not differentiate into dopamine neurons in vitro or after transplantation in vivo. Stem Cells Dev 18(7):1003–1012PubMedCrossRefGoogle Scholar
  40. Drela K, Sarnowska A, Siedlecka P et al (2014) Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner. Cytotherapy 16(7):881–892PubMedCrossRefGoogle Scholar
  41. Drela K, Lech W, Figiel-Dabrowska A et al (2016) Enhanced neuro-therapeutic potential of Wharton’s Jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture. Cytotherapy 18(4):497–509PubMedCrossRefGoogle Scholar
  42. Duan P, Sun S, Li B et al (2014) Mir-29a modulates neuronal differentiation through targeting REST in mesenchymal stem cells. PLoS One 9(5):e97684PubMedPubMedCentralCrossRefGoogle Scholar
  43. Egusa H, Schweizer FE, Wang CC et al (2005) Neuronal differentiation of bone marrow-derived stromal stem cells involves suppression of discordant phenotypes through gene silencing. J Biol Chem 280(25):23691–23697PubMedCrossRefGoogle Scholar
  44. Ende M, Ende N (1972) Hematopoietic transplantation by means of fetal (cord) blood: a new method. Va Med Mon 99(3):276–280PubMedGoogle Scholar
  45. Episkopou V (2005) Sox2 functions in adult neural stem cells. Trends Neurosci 28(5):219–221PubMedCrossRefGoogle Scholar
  46. Faghihi F, Mirzaei E, Ai J et al (2016) Differentiation potential of human chorion-derived mesenchymal stem cells into motor neuron-like cells in two- and three-dimensional culture systems. Mol Neurobiol 53(3):1862–1872PubMedCrossRefGoogle Scholar
  47. Fatimah SS, Tan GC, Chua K et al (2013) Stemness and angiogenic gene expression changes of serial-passage human amnion mesenchymal cells. Microvasc Res 86:21–29PubMedCrossRefGoogle Scholar
  48. Fink KD, Rossignol J, Crane AT et al (2013) Transplantation of umbilical cord-derived mesenchymal stem cells into the striata of R6/2 mice: behavioral and neuropathological analysis. Stem Cell Res Ther 4(5):130PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fisher-Shoval Y, Barhum Y, Sadan O et al (2012) Transplantation of placenta-derived mesenchymal stem cells in the EAE mouse model of MS. J Mol Neurosci 48(1):176–184PubMedCrossRefGoogle Scholar
  50. Fotia C, Massa A, Boriani F et al (2015) Hypoxia enhances proliferation. Cytotechnology 67(6):1073–1084PubMedCrossRefGoogle Scholar
  51. Fu L, Zhu L, Huang Y et al (2008) Derivation of neural stem cells from mesenchymal stem cells: evidence for a bipotential stem cell population. Stem Cells Dev 17(6):1109–1121PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gao Y, Bai C, Zheng D et al (2016) Combination of melatonin and wnt-4 promotes neural cell differentiation in bovine amniotic epithelial cells and recovery from spinal cord injury. J Pineal Res 60(3):303–312PubMedCrossRefGoogle Scholar
  53. Ge W, Ren C, Duan X et al (2015) Differentiation of mesenchymal stem cells into neural stem cells using cerebrospinal fluid. Cell Biochem Biophys 71(1):449–455PubMedCrossRefGoogle Scholar
  54. Gluckman E, Rocha V (2009) Cord blood transplantation: state of the art. Haematologica 94(4):451–454PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gornicka E, Janowski M, Jurga M et al (2006) Human umbilical cord blood-derived neural progenitors (HUCB-NPs) effects on functional recovery from long-lasting motor deficits following ouabain lesion of the rat brain. Behav Pharm 17:555CrossRefGoogle Scholar
  56. Gornicka-Pawlak el B, Janowski M, Habich A et al (2011) Systemic treatment of focal brain injury in the rat by human umbilical cord blood cells being at different level of neural commitment. Acta Neurobiol Exp (Wars) 71(1):46–64Google Scholar
  57. Guan M, Xu Y, Wang W et al (2014) Differentiation into neurons of rat bone marrow-derived mesenchymal stem cells. Eur Cytokine Netw 25(3):58–63PubMedGoogle Scholar
  58. Ha Y, Choi JU, Yoon DH, Yeon DS et al (2001) Neural phenotype expression of cultured human cord blood cells in vitro. Neuroreport 12:523–527CrossRefGoogle Scholar
  59. Habich A, Domanska-Janik K (2011) Aggregation-promoted expansion of neuraly committed human umbilical cord blood progenitors in vitro. Acta Neurobiol Exp (Wars) 71(1):1–11Google Scholar
  60. Habich A, Jurga M, Markiewicz I et al (2006) Early appearance of stem/progenitor cells with neural-like characteristics in human cord blood mononuclear fraction cultured in vitro. Exp Hematol 34:914–925PubMedCrossRefGoogle Scholar
  61. Habich A, Szablowska-Gadomska I, Zayat V et al (2013) Epigenetic and molecular signature of human umbilical cord blood-derived neural stem cell (HUCB-NSC) neuronal differentiation. Acta Neurobiol Exp (Wars) 73(1):143–156Google Scholar
  62. Hall BK (2000) The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic. Evol Dev 2(1):3–5PubMedCrossRefGoogle Scholar
  63. Han R, Kan Q, Sun Y et al (2012) Mir-9 promotes the neural differentiation of mouse bone marrow mesenchymal stem cells via targeting zinc finger protein 521. Neurosci Lett 515(2):147–152PubMedCrossRefGoogle Scholar
  64. Haris DT, Rogers I (2007) Umbilical cord blood, a unique source of pluripotent stem cells for the regenerative medicine. Curr Stem Cell Res Ther 2:301–309CrossRefGoogle Scholar
  65. Harris VK, Faroqui R, Vyshkina T et al (2012) Characterization of autologous mesenchymal stem cell-derived neural progenitors as a feasible source of stem cells for central nervous system applications in multiple sclerosis. Stem Cells Transl Med 1(7):536–547PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hattori H, Suzuki S, Okazaki Y et al (2012) Intracranial transplantation of monocyte-derived multipotential cells enhances recovery after ischemic stroke in rats. J Neurosci Res 90(2):479–488PubMedCrossRefGoogle Scholar
  67. Hayakawa K, Esposito E, Wang X et al (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535(7613):551–555PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hayase M, Kitada M, Wakao S et al (2009) Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke. J Cereb Blood Flow Metab 29(8):1409–1420PubMedCrossRefGoogle Scholar
  69. Hayati AR, Nur Fariha MM, Tan GC et al (2011) Potential of human decidua stem cells for angiogenesis and neurogenesis. Arch Med Res 42(4):291–300PubMedCrossRefGoogle Scholar
  70. Hermann A, Gastl R, Liebau S et al (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117(Pt 19):4411–4422PubMedCrossRefGoogle Scholar
  71. Hermann A, List C, Habisch HJ et al (2010) Age-dependent neuroectodermal differentiation capacity of human mesenchymal stromal cells: limitations for autologous cell replacement strategies. Cytotherapy 12(1):17–30PubMedCrossRefGoogle Scholar
  72. Hida N, Nishiyama N, Miyoshi S et al (2008) Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells 26(7):1695–1704PubMedCrossRefGoogle Scholar
  73. Hoehn H, Bryant EM, Karp LE et al (1974) Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. I. Clonal morphology and growth potential. Pediatr Res 8(8):746–754PubMedCrossRefGoogle Scholar
  74. Hoehn H, Bryant EM, Karp LE et al (1975) Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. II. Cytogenetic parameters as functions of clonal type and preparative technique. Clin Genet 7(1):29–36PubMedCrossRefGoogle Scholar
  75. Hosseini SM, Vasaghi A, Nakhlparvar N (2015) Differentiation of Wharton’s jelly mesenchymal stem cells into neurons in alginate scaffold. Neural Regen Res 10(8):1312–1316PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hsu YC, Wu YT, Yu TH et al (2016) Mitochondria in mesenchymal stem cell biology and cell therapy: from cellular differentiation to mitochondrial transfer. Semin Cell Dev Biol 52:119–131PubMedCrossRefGoogle Scholar
  77. Hu W, Guan FX, Li Y et al (2013) New methods for inducing the differentiation of amniotic-derived mesenchymal stem cells into motor neuron precursor cells. Tissue Cell 45(5):295–305PubMedCrossRefGoogle Scholar
  78. Huang YC, Yang ZM, Chen XH et al (2009) Isolation of mesenchymal stem cells from human placental decidua basalis and resistance to hypoxia and serum deprivation. Stem Cell Rev 5(3):247–255PubMedCrossRefGoogle Scholar
  79. Huang YC, Yang ZM, Jiang NG et al (2010) Characterization of MSCs from human placental decidua basalis in hypoxia and serum deprivation. Cell Biol Int 34(3):237–243PubMedCrossRefGoogle Scholar
  80. Huat TJ, Khan AA, Abdullah JM et al (2015) MicroRNA expression profile of neural progenitor-like cells derived from rat bone marrow mesenchymal stem cells under the influence of IGF-1, bFGF and EGF. Int J Mol Sci 16(5):9693–9718PubMedPubMedCentralCrossRefGoogle Scholar
  81. Igura K, Zhang X, Takahashi K et al (2004) Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6(6):543–553PubMedCrossRefGoogle Scholar
  82. Ilancheran S, Michalska A, Peh G et al (2007) Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 77(3):577–588PubMedCrossRefGoogle Scholar
  83. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C et al (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102(4):1548–1549CrossRefGoogle Scholar
  84. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7):1338–1345CrossRefGoogle Scholar
  85. Jablonska A, Kozlowska H, Markiewicz I et al (2010) Transplantation of neural stem cells derived from human cord blood to the brain of adult and neonatal rats. Acta Neurobiol Exp (Wars) 70(4):337–350. Erratum in: Acta Neurobiol Exp (Wars) 71(2):300–302.Google Scholar
  86. Janowski M, Lukomska B, Kozlowska H et al (2004) Intra-carotic administration of neural progenitors derived from human umbilical cord blood mononuclear fraction gives robust behavioral recovery in ouabain model of stroke. Exp Neurol 187:210Google Scholar
  87. Janowski M, Walczak P, Kropiwnicki T et al (2014) Long-term MRI cell tracking after intraventricular delivery in a patient with global cerebral ischemia and prospects for magnetic navigation of stem cells within the CSF. PLoS One 9(2):e97631PubMedPubMedCentralCrossRefGoogle Scholar
  88. Jeong JA, Gang EJ, Hong SH et al (2004) Rapid neural differentiation of human cord blood-derived mesenchymal stem cells. Neuroreport 15(11):1731–1734PubMedCrossRefGoogle Scholar
  89. Jezierski A, Gruslin A, Tremblay R et al (2010) Probing stemness and neural commitment in human amniotic fluid cells. Stem Cell Rev 6(2):199–214PubMedCrossRefGoogle Scholar
  90. Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49PubMedCrossRefGoogle Scholar
  91. Jiang Y, Henderson D, Blackstad M et al (2003) Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci USA 100(Suppl 1):11854–11860PubMedCrossRefGoogle Scholar
  92. Jiang G, Di Bernardo J, Maiden MM et al (2014) Human transgene-free amniotic-fluid-derived induced pluripotent stem cells for autologous cell therapy. Stem Cells Dev 23(21):2613–2625PubMedCrossRefGoogle Scholar
  93. Jin K, Mao XO, Batteur S et al (2003) Induction of neuronal markers in bone marrow cells: differential effects of growth factors and patterns of intracellular expression. Exp Neurol 184(1):78–89PubMedCrossRefGoogle Scholar
  94. Jing L, Jia Y, Lu J et al (2011) Microrna-9 promotes differentiation of mouse bone mesenchymal stem cells into neurons by notch signaling. Neuroreport 22(5):206–211PubMedCrossRefGoogle Scholar
  95. Jones GN, Moschidou D, Puga-Iglesias TI et al (2012) Ontological differences in first compared to third trimester human fetal placental chorionic stem cells. PLoS One 7(9):e43395PubMedPubMedCentralCrossRefGoogle Scholar
  96. Jozwiak S, Habich A, Kotulska K et al (2010) Intracerebroventricular transplantation of cord blood-derived neural progenitors in a child with severe global brain ischemic injury. Cell Med 1(2):71–80PubMedPubMedCentralCrossRefGoogle Scholar
  97. Jurga M, Lipkowski AW, Lukomska B et al (2009) Generation of functional neural artificial tissue from human umbilical cord blood stem cells. Tissue Eng Part C Methods 15(3):365–372PubMedCrossRefGoogle Scholar
  98. Jurga M, Dainiak MB, Sarnowska A (2011) The performance of laminin-containing cryogel scaffolds in neural tissue regeneration. Biomaterials 32(13):3423–3434PubMedCrossRefGoogle Scholar
  99. Kakishita K, Elwan MA, Nakao N et al (2000) Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: a potential source of donor for transplantation therapy. Exp Neurol 165(1):27–34PubMedCrossRefGoogle Scholar
  100. Kaneko Y, Hayashi T, Yu S et al (2011) Human amniotic epithelial cells express melatonin receptor mt1, but not melatonin receptor mt2: a new perspective to neuroprotection. J Pineal Res 50(3):272–280PubMedCrossRefGoogle Scholar
  101. Karahuseyinoglu S, Cinar O, Kilic E et al (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25(2):319–331PubMedCrossRefGoogle Scholar
  102. Kheirandish M, Gavgani SP, Samiee S (2017) The effect of hypoxia preconditioning on the neural and stemness genes expression profiling in human umbilical cord blood mesenchymal stem cells. Transfus Apher Sci 56(3):392–399PubMedCrossRefGoogle Scholar
  103. Kholodenko IV, Yarygin KN, Gubsky LV et al (2012) Intravenous xenotransplantation of human placental mesenchymal stem cells to rats: comparative analysis of homing in rat brain in two models of experimental ischemic stroke. Bull Exp Biol Med 154(1):118–123PubMedCrossRefGoogle Scholar
  104. Khoo ML, Shen B, Tao H et al (2008) Long-term serial passage and neuronal differentiation capability of human bone marrow mesenchymal stem cells. Stem Cells Dev 17(5):883–896PubMedCrossRefGoogle Scholar
  105. Kim S, Honmou O, Kato K et al (2006) Neural differentiation potential of peripheral blood- and bone-marrow-derived precursor cells. Brain Res 1123(1):27–33PubMedPubMedCentralCrossRefGoogle Scholar
  106. Kodama H, Inoue T, Watanabe R et al (2006) Neurogenic potential of progenitors derived from human circulating cd14+ monocytes. Immunol Cell Biol 84(2):209–217PubMedCrossRefGoogle Scholar
  107. Kogler G, Sensken S, Airey JA et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135PubMedPubMedCentralCrossRefGoogle Scholar
  108. Kohyama J, Abe H, Shimazaki T et al (2001) Brain from bone: efficient “Meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with noggin or a demethylating agent. Differentiation 68(4–5):235–244PubMedCrossRefGoogle Scholar
  109. Koning JJ, Konijn T, Lakeman KA et al (2016) Nestin-expressing precursors give rise to both endothelial as well as nonendothelial lymph node stromal cells. J Immunol 197(7):2686–2694PubMedPubMedCentralCrossRefGoogle Scholar
  110. Kozlowska H, Jablonka J, Janowski M et al (2007) Transplantation of a novel human cord blood-derived neural-like stem cell line in a rat model of cortical infarct. Stem Cells Dev 16(3):481–488PubMedCrossRefGoogle Scholar
  111. Krabbe C, Zimmer J, Meyer M (2005) Neural transdifferentiation of mesenchymal stem cells--a critical review. APMIS 113(11–12):831–844PubMedCrossRefGoogle Scholar
  112. Kuci S, Kuci Z, Schmid S et al (2008) Efficient in vitro generation of adult multipotent cells from mobilized peripheral blood cd133+ cells. Cell Prolif 41(1):12–27PubMedCrossRefGoogle Scholar
  113. Kucia M, Machalinski B, Ratajczak MZ (2006) The developmental deposition of epiblast/germ cell-line derived cells in various organs as a hypothetical explanation of stem cell plasticity? Acta Neurobiol Exp (Wars) 66(4):331–341Google Scholar
  114. Kucia M, Halasa M, Wysoczynski M et al (2007) Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21:297–303PubMedCrossRefGoogle Scholar
  115. Kuh SU, Cho YE, Yoon DH et al (2005) Functional recovery after human umbilical cord blood cells transplantation with brain derived neurotrophic factor into the spinal cord injured rat. Acta Neurochir (Wien) 147:985–992CrossRefGoogle Scholar
  116. Kuwana M, Okazaki Y, Kodama H et al (2003) Human circulating cd14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol 74(5):833–845PubMedCrossRefPubMedCentralGoogle Scholar
  117. Kwon A, Kim Y, Kim M et al (2016) Tissue-specific differentiation potency of mesenchymal stromal cells from perinatal tissues. Sci Rep 6:23544PubMedPubMedCentralCrossRefGoogle Scholar
  118. Langrzyk A, Nowak WN, Stępniewski J (2018) Critical view on mesenchymal stromal cells in regenerative medicine. Antioxid Redox Signal 29(2):169–190PubMedCrossRefGoogle Scholar
  119. Lech W, Figiel-Dabrowska A, Sarnowska A et al (2016) Phenotypic, functional, and safety control at preimplantation phase of MSC-based therapy. Stem Cells Int 2016:2514917PubMedPubMedCentralCrossRefGoogle Scholar
  120. Lee J, Baek JH, Choi KS et al (2013) Cyclin-dependent kinase 4 signaling acts as a molecular switch between syngenic differentiation and neural transdifferentiation in human mesenchymal stem cells. Cell Cycle 12(3):442–451PubMedPubMedCentralCrossRefGoogle Scholar
  121. Lee JH, Mitchell RR, McNicol JD et al (2015) Single transcription factor conversion of human blood fate to npcs with cns and pns developmental capacity. Cell Rep 11(9):1367–1376PubMedCrossRefGoogle Scholar
  122. Li F, Miao ZN, Xu YY et al (2012) Transplantation of human amniotic mesenchymal stem cells in the treatment of focal cerebral ischemia. Mol Med Rep 6(3):625–630PubMedCrossRefGoogle Scholar
  123. Li W, Zhu B, Strakova Z et al (2014) Two-way regulation between cells and aligned collagen fibrils: local 3D matrix formation and accelerated neural differentiation of human decidua parietalis placental stem cells. Biochem Biophys Res Commun 450(4):1377–1382PubMedPubMedCentralCrossRefGoogle Scholar
  124. Li H, Li J, Sheng W et al (2015) Astrocyte-like cells differentiated from a novel population of CD45-positive cells in adult human peripheral blood. Cell Biol Int 39(1):84–93PubMedCrossRefGoogle Scholar
  125. Liao W, Huang N, Yu J et al (2015) Direct conversion of cord blood CD34+ cells Into neural stem cells by OCT4. Stem Cells Transl Med 4(7):755–763PubMedPubMedCentralCrossRefGoogle Scholar
  126. Liu X, Li D, Jiang D, Fang Y (2013) Acetylcholine secretion by motor neuron-like cells from umbilical cord mesenchymal stem cells. Neural Regen Res 8(22):2086–2092PubMedPubMedCentralGoogle Scholar
  127. Locher H, Frijns JH, Huisman MA et al (2014) Tubb3: neuronal marker or melanocyte mimic? Cell Transplant 23(11):1471–1473PubMedCrossRefGoogle Scholar
  128. Lu P, Blesch A, Tuszynski MH (2004) Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res 77(2):174–191PubMedCrossRefGoogle Scholar
  129. Lu GH, Yong WS, Xu ZM et al (2012) Human placental decidua basalis-derived mesenchymal stem cells differentiate into dopamine neuron-like cells with no response to long-term culture in vitro. Neuroreport 23(8):513–518PubMedCrossRefGoogle Scholar
  130. Mahrouf-Yorgov M, Augeul L, Da Silva CC et al (2017) Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ 24(7):1224–1238PubMedPubMedCentralCrossRefGoogle Scholar
  131. Maraldi T, Bertoni L, Riccio M et al (2014) Human amniotic fluid stem cells: neural differentiation in vitro and in vivo. Cell Tissue Res 357(1):1–13PubMedCrossRefPubMedCentralGoogle Scholar
  132. Marcus AJ, Coyne TM, Rauch J et al (2008) Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation 76(2):130–144PubMedCrossRefPubMedCentralGoogle Scholar
  133. Mareschi K, Rustichelli D, Comunanza V et al (2009) Multipotent mesenchymal stem cells from amniotic fluid originate neural precursors with functional voltage-gated sodium channels. Cytotherapy 11(5):534–547PubMedCrossRefPubMedCentralGoogle Scholar
  134. McGuckin CP, Forraz N, Allouard Q et al (2004) Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro. Exp Cell Res 295:350PubMedCrossRefPubMedCentralGoogle Scholar
  135. McGuckin CP, Forraz N, Baradez MO (2005) Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif 38:245–255PubMedCrossRefPubMedCentralGoogle Scholar
  136. Melton DA, Cowan C (2004) “Stemness”: definitions, criteria, and standards. In: Lanza R et al (eds) Handbook of stem cells. Elsevier, Amsterdam, pp 25–31Google Scholar
  137. Meng X, Ichim TE, Zhong J et al (2007) Endometrial regenerative cells: a novel stem cell population. J Transl Med 5:57PubMedPubMedCentralCrossRefGoogle Scholar
  138. Miki T, Lehmann T, Cai H et al (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23(10):1549–1559PubMedCrossRefPubMedCentralGoogle Scholar
  139. Mitchell KE, Weiss ML, Mitchell BM (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21(1):50–60PubMedCrossRefPubMedCentralGoogle Scholar
  140. Monti M, Imberti B, Bianchi N et al (2017) Novel method for isolation of pluripotent stem cells from human umbilical cord blood. Stem Cells Dev 6(17):1258–1269CrossRefGoogle Scholar
  141. Morrison SJ, Perez SE, Qiao Z et al (2000) Transient notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101(5):499–510PubMedCrossRefPubMedCentralGoogle Scholar
  142. Nan Z, Grande A, Sanberg CD (2005) Infusion of human umbilical cord blood ameliorates neurologic deficits in rats with hemorrhagic brain injury. Ann NY Acad Sci 1049:84–96PubMedCrossRefPubMedCentralGoogle Scholar
  143. Neuhuber B, Gallo G, Howard L et al (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 77(2):192–204PubMedCrossRefPubMedCentralGoogle Scholar
  144. Nichols JE, Niles JA, DeWitt D et al (2013) Neurogenic and neuro-protective potential of a novel subpopulation of peripheral blood-derived CD133+ ABCG2+CXCR4+ mesenchymal stem cells: development of autologous cell-based therapeutics for traumatic brain injury. Stem Cell Res Ther 4(1):3PubMedPubMedCentralCrossRefGoogle Scholar
  145. Niknejad H, Peirovi H, Ahmadiani A et al (2010) Differentiation factors that influence neuronal markers expression in vitro from human amniotic epithelial cells. Eur Cell Mater 19:22–29PubMedCrossRefPubMedCentralGoogle Scholar
  146. Obtulowicz P, Lech W, Strojek L (2016) Induction of endothelial phenotype from Wharton’s jelly-derived MSCs and comparison of their vasoprotective and neuroprotective potential with primary WJ-MSCs in CA1 hippocampal region ex vivo. Cell Transplant 25:715–727PubMedCrossRefPubMedCentralGoogle Scholar
  147. Okawa H, Okuda O, Arai H et al (2001) Amniotic epithelial cells transform into neuron-like cells in the ischemic brain. Neuroreport 12(18):4003–4007PubMedCrossRefPubMedCentralGoogle Scholar
  148. Okolicsanyi RK, Camilleri ET, Oikari LE et al (2015) Human mesenchymal stem cells retain multilineage differentiation capacity including neural marker expression after extended in vitro expansion. PLoS One 10(9):e0137255PubMedPubMedCentralCrossRefGoogle Scholar
  149. Paldino E, Cenciarelli C, Giampaolo A (2014) Induction of dopaminergic neurons from human Wharton’s jelly mesenchymal stem cell by forskolin. J Cell Physiol 229(2):232–244PubMedCrossRefPubMedCentralGoogle Scholar
  150. Park S, Koh SE, Maeng S et al (2011) Neural progenitors generated from the mesenchymal stem cells of first-trimester human placenta matured in the hypoxic-ischemic rat brain and mediated restoration of locomotor activity. Placenta 32(3):269–276PubMedCrossRefPubMedCentralGoogle Scholar
  151. Park S, Kim E, Koh SE et al (2012) Dopaminergic differentiation of neural progenitors derived from placental mesenchymal stem cells in the brains of Parkinson’s disease model rats and alleviation of asymmetric rotational behavior. Brain Res 1466:158–166PubMedCrossRefPubMedCentralGoogle Scholar
  152. Park S, Koh SE, Hur CY et al (2013) Comparison of human first and third trimester placental mesenchymal stem cell. Cell Biol Int 37(3):242–249PubMedCrossRefPubMedCentralGoogle Scholar
  153. Patel AN, Park E, Kuzman M et al (2008) Multipotent menstrual blood stromal stem cells: Isolation, characterization, and differentiation. Cell Transplant 17(3):303–311PubMedCrossRefPubMedCentralGoogle Scholar
  154. Perrier AL, Tabar V, Barberi T et al (2004) Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 101(34):12543–12548PubMedCrossRefPubMedCentralGoogle Scholar
  155. Peterson DA (2004) Umbilical cord blood cells and brain stroke injury: bringing in fresh blood to address an old problem. J Clin Invest 114:312–314PubMedPubMedCentralCrossRefGoogle Scholar
  156. Poloni A, Rosini V, Mondini E et al (2008) Characterization and expansion of mesenchymal progenitor cells from first-trimester chorionic villi of human placenta. Cytotherapy 10(7):690–697PubMedCrossRefPubMedCentralGoogle Scholar
  157. Porat Y, Porozov S, Belkin D et al (2006) Isolation of an adult blood-derived progenitor cell population capable of differentiation into angiogenic, myocardial and neural lineages. Br J Haematol 135(5):703–714PubMedCrossRefGoogle Scholar
  158. Portmann-Lanz CB, Schoeberlein A, Huber A et al (2006) Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 194(3):664–673PubMedCrossRefPubMedCentralGoogle Scholar
  159. Portmann-Lanz CB, Schoeberlein A, Portmann R et al (2010) Turning placenta into brain: placental mesenchymal stem cells differentiate into neurons and oligodendrocytes. Am J Obstet Gynecol 202(3):294.e1–294.e11CrossRefGoogle Scholar
  160. Price EM, Prather RS, Foley CM (2006) Multipotent adult progenitor cell lines originating from the peripheral blood of green fluorescent protein transgenic swine. Stem Cells Dev 15(4):507–522PubMedCrossRefPubMedCentralGoogle Scholar
  161. Prusa AR, Marton E, Rosner M et al (2004) Neurogenic cells in human amniotic fluid. Am J Obstet Gynecol 191(1):309–314PubMedCrossRefGoogle Scholar
  162. Qi H, Yang YL, Xie HB (2011) Teratoma derived from bone marrow mesenchymal stem cells in a diabetic microenvironment. Pancreas 40(6):981–983PubMedCrossRefPubMedCentralGoogle Scholar
  163. Qiao C, Xu W, Zhu W (2008) Human mesenchymal stem cells isolated from the umbilical cord. Cell Biol Int 32(1):8–15PubMedCrossRefPubMedCentralGoogle Scholar
  164. Rafieemehr H, Kheirandish M, Soleimani M (2015) Improving the neuronal differentiation efficiency of umbilical cord blood-derived mesenchymal stem cells cultivated under appropriate conditions. Iran J Basic Med Sci 18(11):1100–1106PubMedPubMedCentralGoogle Scholar
  165. Resca E, Zavatti M, Bertoni L et al (2013) Enrichment in c-kit+ enhances mesodermal and neural differentiation of human chorionic placental cells. Placenta 34(7):526–535PubMedCrossRefPubMedCentralGoogle Scholar
  166. Rodrigues MC, Lippert T, Nguyen H et al (2016) Menstrual blood-derived stem cells: in vitro and in vivo characterization of functional effects. Adv Exp Med Biol 951:111–121PubMedCrossRefPubMedCentralGoogle Scholar
  167. Sabapathy V, Ravi S, Srivastava V et al (2012) Long-term cultured human term placenta-derived mesenchymal stem cells of maternal origin displays plasticity. Stem Cells Int 2012:174328PubMedPubMedCentralCrossRefGoogle Scholar
  168. Sakuragawa N, Thangavel R, Mizuguchi M et al (1996) Expression of markers for both neuronal and glial cells in human amniotic epithelial cells. Neurosci Lett 209(1):9–12PubMedCrossRefPubMedCentralGoogle Scholar
  169. Sakuragawa N, Misawa H, Ohsugi K et al (1997) Evidence for active acetylcholine metabolism in human amniotic epithelial cells: applicable to intracerebral allografting for neurologic disease. Neurosci Lett 232(1):53–56PubMedCrossRefPubMedCentralGoogle Scholar
  170. Sakuragawa N, Kakinuma K, Kikuchi A et al (2004) Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells. J Neurosci Res 78(2):208–214PubMedCrossRefPubMedCentralGoogle Scholar
  171. Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164(2):247–256PubMedCrossRefPubMedCentralGoogle Scholar
  172. Sanchez-Ramos JR, Song S, Kamath SG et al (2001) Expression of neural markers in human umbilical cord blood. Exp Neurol 171:109–115PubMedCrossRefPubMedCentralGoogle Scholar
  173. Sandvig I, Gadjanski I, Vlaski-Lafarge M et al (2017) Strategies to enhance implantation and survival of stem cells after their injection in ischemic neural tissue. Stem Cells Dev 26(8):554–565PubMedCrossRefPubMedCentralGoogle Scholar
  174. Sanluis-Verdes A, Sanluis-Verdes N, Manso-Revilla MJ et al (2017) Tissue engineering for neurodegenerative diseases using human amniotic membrane and umbilical cord. Cell Tissue Bank 18:1–15PubMedCrossRefPubMedCentralGoogle Scholar
  175. Sarnowska A, Domańska-Janik K (2017) The basis to application of cell therapy in neurological disorders. Neurologia Praktyczna (in polish) 6(99):7–14Google Scholar
  176. Sarnowska A, Jablonska A, Jurga M et al (2013) Encapsulation of mesenchymal stem cells by bioscaffolds protects cell survival and attenuates neuroinflammatory reaction in injured brain tissue after transplantation. Cell Transplant 22(Suppl 1):S67–S82PubMedCrossRefGoogle Scholar
  177. Sarugaser R, Lickorish D, Baksh D (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23(2):220–229PubMedCrossRefGoogle Scholar
  178. Saxena M, Prashar P, Yadav PS et al (2016) Mouse bone marrow stromal cells differentiate to neuron-like cells upon inhibition of BMP signaling. Differentiation 92(1–2):1–9PubMedCrossRefGoogle Scholar
  179. Scharstuhl A, Schewe B, Benz K et al (2007) Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology. Stem Cells 25(12):3244–3251PubMedCrossRefGoogle Scholar
  180. Secco M, Zucconi E, Vieira NM et al (2008) Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells 26(1):146–150PubMedCrossRefGoogle Scholar
  181. Semenov OV, Koestenbauer S, Riegel M et al (2010) Multipotent mesenchymal stem cells from human placenta: critical parameters for isolation and maintenance of stemness after isolation. Am J Obstet Gynecol 202(2):193.e1–193.e13CrossRefGoogle Scholar
  182. Shyamala K, Yanduri S, Girish HC (2015) Neural crest: the fourth germ layer. J Oral Maxillofac Pathol 19(2):221–229PubMedPubMedCentralCrossRefGoogle Scholar
  183. Song S, Zhang H, Cuevas J et al (2007) Comparison of neuron-like cells derived from bone marrow stem cells to those differentiated from adult brain neural stem cells. Stem Cells Dev 16(5):747–756PubMedCrossRefGoogle Scholar
  184. Spitzer N, Sammons GS, Butts HM et al (2011) Multipotent progenitor cells derived from adult peripheral blood of swine have high neurogenic potential in vitro. J Cell Physiol 226(12):3156–3168PubMedPubMedCentralCrossRefGoogle Scholar
  185. Sridharan I, Kim T, Strakova Z et al (2013) Matrix-specified differentiation of human decidua parietalis placental stem cells. Biochem Biophys Res Commun 437(3):489–495PubMedPubMedCentralCrossRefGoogle Scholar
  186. Strakova Z, Livak M, Krezalek M et al (2008) Multipotent properties of myofibroblast cells derived from human placenta. Cell Tissue Res 332(3):479–488PubMedPubMedCentralCrossRefGoogle Scholar
  187. Sun W, Buzanska L, Domanska-Janik K (2005) Voltage-sensitive and ligand-gated channels in differentiating neural stem-like cells derived from the nonhematopoietic fraction of human umbilical cord blood. Stem Cells 23(7):931–945PubMedCrossRefGoogle Scholar
  188. Sun H, Hou Z, Yang H et al (2014) Multiple systemic transplantations of human amniotic mesenchymal stem cells exert therapeutic effects in an als mouse model. Cell Tissue Res 357(3):571–582PubMedCrossRefGoogle Scholar
  189. Taguchi A, Soma T, Tanaka H (2004) Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 114(3):330–338PubMedPubMedCentralCrossRefGoogle Scholar
  190. Takashima Y, Era T, Nakao K, Kondo S et al (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129(7):1377–1388PubMedCrossRefGoogle Scholar
  191. Talwadekar M, Fernandes S, Kale V et al (2016) Valproic acid enhances the neural differentiation of human placenta derived-mesenchymal stem cells in vitro. J Tissue Eng Regen Med 11(11):3111–3123PubMedCrossRefGoogle Scholar
  192. Tang X, Wang S, Bai Y et al (2016) Conversion of adult human peripheral blood mononuclear cells into induced neural stem cell by using episomal vectors. Stem Cell Res 16(2):236–242PubMedCrossRefGoogle Scholar
  193. Tao H, Rao R, Ma DD (2005) Cytokine-induced stable neuronal differentiation of human bone marrow mesenchymal stem cells in a serum/feeder cell-free condition. Dev Growth Differ 47(6):423–433PubMedCrossRefGoogle Scholar
  194. Taylor HS (2004) Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA 292(1):81–85PubMedCrossRefGoogle Scholar
  195. Tio M, Tan KH, Lee W et al (2010) Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells. PLoS One 5(2):e9398PubMedPubMedCentralCrossRefGoogle Scholar
  196. Tondreau T, Lagneaux L, Dejeneffe M et al (2004) Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation 72(7):319–326PubMedCrossRefGoogle Scholar
  197. Toselli M, Cerbai E, Rossi F et al (2008) Do amniotic fluid-derived stem cells differentiate into neurons in vitro? Nat Biotechnol 26(3):269–270 author reply 270–271PubMedCrossRefGoogle Scholar
  198. Tracy ET, Zhang CY, Gentry T (2011) Isolation and expansion of oligodendrocyte progenitor cells from cryopreserved human umbilical cord blood. Cytotherapy 13(6):722–729PubMedPubMedCentralCrossRefGoogle Scholar
  199. Troyer DL, Weiss ML (2008) Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26(3):591–599PubMedCrossRefGoogle Scholar
  200. Trzaska KA, King CC, Li KY et al (2009) Brain-derived neurotrophic factor facilitates maturation of mesenchymal stem cell-derived dopamine progenitors to functional neurons. J Neurochem 110(3):1058–1069PubMedCrossRefGoogle Scholar
  201. Tsai HL, Deng WP, Lai WF et al (2014) Wnts enhance neurotrophin-induced neuronal differentiation in adult bone-marrow-derived mesenchymal stem cells via canonical and noncanonical signaling pathways. PLoS One 9(8):e104937PubMedPubMedCentralCrossRefGoogle Scholar
  202. Tsai PH, Chang YC, Lee YY et al (2015) Differentiation of blood T cells: reprogramming human induced pluripotent stem cells into neuronal cells. J Chin Med Assoc 78(6):353–359PubMedCrossRefGoogle Scholar
  203. Uchida H, Niizuma K, Kushida Y et al (2017) Human muse cells reconstruct neuronal circuitry in subacute lacunar stroke model. Stroke 48(2):428–435PubMedCrossRefGoogle Scholar
  204. Venkatesh K, Srikanth L, Vengamma B et al (2015) In vitro transdifferentiation of human cultured cd34+ stem cells into oligodendrocyte precursors using thyroid hormones. Neurosci Lett 588:36–41PubMedCrossRefGoogle Scholar
  205. Visvanathan J, Lee S, Lee B et al (2007) The microrna mir-124 antagonizes the anti-neural rest/scp1 pathway during embryonic cns development. Genes Dev 21(7):744–749PubMedPubMedCentralCrossRefGoogle Scholar
  206. Wang HS, Hung SC, Peng ST et al (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22(7):1330–1337PubMedCrossRefGoogle Scholar
  207. Wang H, Jin P, Sabatino M et al (2012) Comparison of endometrial regenerative cells and bone marrow stromal cells. J Transl Med 10(2012):207PubMedPubMedCentralCrossRefGoogle Scholar
  208. Wang CH, Wu CC, Hsu SH et al (2013a) The role of rhoa kinase inhibition in human placenta-derived multipotent cells on neural phenotype and cell survival. Biomaterials 34(13):3223–3330PubMedCrossRefGoogle Scholar
  209. Wang T, Choi E, Monaco MC et al (2013b) Derivation of neural stem cells from human adult peripheral cd34+ cells for an autologous model of neuroinflammation. PLoS One 8(11):e81720PubMedPubMedCentralCrossRefGoogle Scholar
  210. Wang T, Choi E, Monaco MC et al (2015) Direct induction of human neural stem cells from peripheral blood hematopoietic progenitor cells. J Vis Exp 95:52298Google Scholar
  211. Wei PC, Chao A, Peng HH et al (2014) Sox9 as a predictor for neurogenesis potentiality of amniotic fluid stem cells. Stem Cells Transl Med 3(10):1138–1147PubMedPubMedCentralCrossRefGoogle Scholar
  212. Wharton T (1656) Adenographia: sive glandularum totius corporis descriptio. Wharton, LondonGoogle Scholar
  213. Willing AE, Lixian J, Milliken M et al (2003) Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res 73(3):296–307PubMedCrossRefGoogle Scholar
  214. Wolff EF, Gao XB, Yao KV et al (2011) Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model. J Cell Mol Med 15(4):747–755PubMedPubMedCentralCrossRefGoogle Scholar
  215. Woodbury D, Schwarz EJ, Prockop DJ et al (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4):364–370PubMedCrossRefGoogle Scholar
  216. Woodbury D, Reynolds K, Black IB (2002) Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res 69(6):908–917PubMedCrossRefGoogle Scholar
  217. Wu R, Wang N, Li M et al (2013) Experimental study on the facilitative effects of mir-125b on the differentiation of rat bone marrow mesenchymal stem cells into neuron-like cells. Cell Biol Int 37(8):812–819PubMedCrossRefGoogle Scholar
  218. Wu R, Tang Y, Zang W et al (2014) Microrna-128 regulates the differentiation of rat bone mesenchymal stem cells into neuron-like cells by wnt signaling. Mol Cell Biochem 387(1–2):151–158PubMedCrossRefGoogle Scholar
  219. Wu CG, Zhang JC, Xie CQ et al (2015a) In vivo tracking of human placenta derived mesenchymal stem cells in nude mice via (1)(4)c-tdr labeling. BMC Biotechnol 15:55PubMedPubMedCentralCrossRefGoogle Scholar
  220. Wu KJ, Yu SJ, Chiang CW et al (2015b) Transplantation of human placenta-derived multipotent stem cells reduces ischemic brain injury in adult rats. Cell Transplant 24(3):459–470PubMedCrossRefGoogle Scholar
  221. Yan ZJ, Zhang P, Hu YQ et al (2013) Neural stem-like cells derived from human amnion tissue are effective in treating traumatic brain injury in rat. Neurochem Res 38(5):1022–1033PubMedCrossRefGoogle Scholar
  222. Yang Q, Mu J, Li Q et al (2008) A simple and efficient method for deriving neurospheres from bone marrow stromal cells. Biochem Biophys Res Commun 372(4):520–524PubMedCrossRefGoogle Scholar
  223. Yang P, Li Y, Zhang JT et al (2017) Application of human umbilical cord mesenchymal stem cells in spinal cord injury. J Biom Tissue Eng 7(5):393–400CrossRefGoogle Scholar
  224. Yanjie J, Jiping S, Yan Z et al (2007) Effects of notch-1 signalling pathway on differentiation of marrow mesenchymal stem cells into neurons in vitro. Neuroreport 18(14):1443–1447PubMedCrossRefGoogle Scholar
  225. Yarygin KN, Kholodenko IV, Konieva AA et al (2009) Mechanisms of positive effects of transplantation of human placental mesenchymal stem cells on recovery of rats after experimental ischemic stroke. Bull Exp Biol Med 148(6):862–868PubMedCrossRefGoogle Scholar
  226. Ye Y, Zeng YM, Wan MR et al (2011) Induction of human bone marrow mesenchymal stem cells differentiation into neural-like cells using cerebrospinal fluid. Cell Biochem Biophys 59(3):179–184PubMedCrossRefGoogle Scholar
  227. Ye Y, Peng YR, Hu SQ et al (2016) In vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells by cerebrospinal fluid improves motor function of middle cerebral artery occlusion rats. Front Neurol 7:183PubMedPubMedCentralCrossRefGoogle Scholar
  228. Ye Y, Feng TT, Peng YR et al (2018) The treatment of spinal cord injury in rats using bone marrow-derived neural-like cells induced by cerebrospinal fluid. Neurosci Lett 666:85–91PubMedCrossRefGoogle Scholar
  229. Yen BL, Huang HI, Chien CC et al (2005) Isolation of multipotent cells from human term placenta. Stem Cells 23(1):3–9PubMedCrossRefGoogle Scholar
  230. Yen BL, Chien CC, Chen YC et al (2008) Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro. Tissue Eng Part A 14(1):9–17PubMedCrossRefGoogle Scholar
  231. Zeng G, Wang G, Guan F et al (2011) Human amniotic membrane-derived mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles: the effect on neuron-like differentiation in vitro. Mol Cell Biochem 357(1–2):331–341PubMedCrossRefPubMedCentralGoogle Scholar
  232. Zhang L, Zhang HT, Hong SQ (2009) Cografted Wharton’s jelly cells-derived neurospheres and BDNF promote functional recovery after rat spinal cord transection. Neurochem Res 34(11):2030–2039PubMedCrossRefGoogle Scholar
  233. Zhang GY, Wang J, Jia YJ et al (2015) Microrna-9 promotes the neuronal differentiation of rat bone marrow mesenchymal stem cells by activating autophagy. Neural Regen Res 10(2):314–320PubMedPubMedCentralCrossRefGoogle Scholar
  234. Zhou H, Zhang H, Yan Z et al (2016) Transplantation of human amniotic mesenchymal stem cells promotes neurological recovery in an intracerebral hemorrhage rat model. Biochem Biophys Res Commun 475(2):202–208PubMedCrossRefPubMedCentralGoogle Scholar
  235. Zhu M, Feng Q, Sun Y et al (2017) Effect of cartilaginous matrix components on the chondrogenesis and hypertrophy of mesenchymal stem cells in hyaluronic acid hydrogels. J Biomed Mater Res B Appl Biomater 105(8):2292–2300PubMedCrossRefGoogle Scholar
  236. Ziadlou R, Shahhoseini M, Safari F et al (2015) Comparative analysis of neural differentiation potential in human mesenchymal stem cells derived from chorion and adult bone marrow. Cell Tissue Res 362(2):367–377PubMedCrossRefPubMedCentralGoogle Scholar
  237. Zigova T, Willing A, Cardozo-Pelaez F et al (2001) Expression of neural markers in human umbilical cord blood. Exp Neurol 171:109–115PubMedCrossRefPubMedCentralGoogle Scholar
  238. Zigova T, Song S, Willing AE et al (2002) Human umbilical cord blood cells express neural antigens after transplantation into the developing rat brain. Cell Transplant 11(3):265–274PubMedCrossRefGoogle Scholar
  239. Zou D, Chen Y, Han Y et al (2014) Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells. Neural Regen Res 9(12):1241–1248PubMedPubMedCentralCrossRefGoogle Scholar
  240. Zurita M, Bonilla C, Otero L et al (2008) Neural transdifferentiation of bone marrow stromal cells obtained by chemical agents is a short-time reversible phenomenon. Neurosci Res 60(3):275–280PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David J. Eve
    • 1
  • Paul R. Sanberg
    • 1
  • Leonora Buzanska
    • 2
  • Anna Sarnowska
    • 2
  • Krystyna Domanska-Janik
    • 2
  1. 1.Department of Neurosurgery and Brain Repair, Center for Excellence in Aging and Brain RepairUniversity of South FloridaTampaUSA
  2. 2.Stem Cell Bioengineering UnitMossakowski Medical Research Centre Polish Academy of SciencesWarsawPoland

Personalised recommendations