Advertisement

Environmental Niches for NTM and Their Impact on NTM Disease

  • Leah Lande
Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

Nontuberculous mycobacteria (NTM) are ubiquitous inhabitants of natural and man-made water sources as well as outdoor and indoor dusts and soils. Individuals that are susceptible to NTM pulmonary disease are likely acquiring infection through inhalation of aerosolized organisms and possibly also from aspiration of ingested organisms. Numerous studies have documented the colonization of municipal water supplies, commercial and institutional plumbing, and household plumbing with NTM. In addition, NTM have been found in high numbers in various natural and man-made dusts and soils. This chapter will review the current knowledge regarding environmental sources of NTM and the complex factors associated with their survival and transmissibility to humans. Interventions seeking to reduce numbers of NTM in the environment require further study, but avoidance of activities associated with a high risk of aerosolization of water, dusts, and soils can be recommended to individuals with host factors that deem them susceptible to NTM disease.

Keywords

Nontuberculous mycobacteria Mycobacterium avium complex Environment Water Aerosol Plumbing 

References

  1. 1.
    Strollo SE, Adjemian J, Adjemian MK, Prevots DR. The burden of pulmonary nontuberculous mycobacterial disease in the United States. Ann Am Thorac Soc. 2015;12(10):1458–64.CrossRefGoogle Scholar
  2. 2.
    Adjemian J, Olivier KN, Seitz AE, Holland SM, Prevots DR. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med. 2012;185(8):881–6.CrossRefGoogle Scholar
  3. 3.
    Angenent L, Kelley S, Amand A, et al. Molecular identification of potential pathogens in water and air of a hospital therapy pool. PNAS. 2005;102(13):4860–5.CrossRefGoogle Scholar
  4. 4.
    Falkinham JO. Environmental sources of nontuberculous mycobacteria. Clin Chest Med. 2015;36:35–41.CrossRefGoogle Scholar
  5. 5.
    George KL, Parker BC, Gruft H. Epidemiology of infection by nontuberculous mycobacteria. Growth and survival in natural waters. Am Rev Respir Dis. 1980;122(1):89–94.PubMedGoogle Scholar
  6. 6.
    Glazer CS, Martyny JW, Lee B. Nontuberculous mycobacteria in aerosol droplets and bulk water samples from therapy pools and hot tubs. J Occup Environ Hyg. 2007;4(11):831–40.CrossRefGoogle Scholar
  7. 7.
    Lande L, Kwait R, Williams M, et al. Hot water heaters are serving as incubators for nontuberculous mycobacteria in the home environment. Am J Respir Crit Care Med. 2015;191:A5270.Google Scholar
  8. 8.
    Thomson R, Tolson C, Sidjabat H. Mycobacterium abscessus isolated from municipal water – a potential source of human infection. BMC Infect Dis. 2013;13:241.CrossRefGoogle Scholar
  9. 9.
    Halstrom S, Price P, Thomson R. Review: environmental mycobacteria as a cause of human infection. Int J Mycobacteriol. 2015;4:81–91.CrossRefGoogle Scholar
  10. 10.
    Thomson R, Carter R, Tolson C, Huygens F, Hargreaves M. Factors associated with the isolation of nontuberculous mycobacteria (NTM) from a large municipal water system in Brisbane, Australia. BMC Microbiol. 2013;13:89.CrossRefGoogle Scholar
  11. 11.
    Torvinen E, Suomalainen S, Lehtola M, Miettinen I, Zacheus O, Paulin L, et al. Mycobacteria in water and loose deposits of drinking water distribution systems in Finland. Appl Environ Microbiol. 2004;70:1973–81.CrossRefGoogle Scholar
  12. 12.
    Covert T, Rodgers M, Reyes A, Stelma G Jr. Occurrence of nontuberculous mycobacteria in environmental samples. Appl Environ Microbiol. 1999;65(6):2492–6.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Thomson R, Tolson C, Carter R, Coulter C, Huygens F, Hargreaves M. Isolation of NTM from household water and shower aerosols in patients with NTM pulmonary disease. J Clin Microbiol. 2013;51:3006–11.CrossRefGoogle Scholar
  14. 14.
    Slosarek M, Kubin M, Jaresova M. Water-borne household infections due to Mycobacterium xenopi. Central Eur J Publ Hlth. 1993;1(2):78–80.Google Scholar
  15. 15.
    Donohue MJ, Mistry JH, Donohue JM, O’Connell K, King D, Byran J, et al. Increased frequency of nontuberculous mycobacteria detection at potable water taps within the United States. Environ Sci Technol. 2015;49(10):6127–33.CrossRefGoogle Scholar
  16. 16.
    Falkinham J III, Iseman M, de Haas P, van Soolingen D. Mycobacterium avium in a shower linked to pulmonary disease. J Water Health. 2008;6:209–13.CrossRefGoogle Scholar
  17. 17.
    Feazel L, Baumgartner L, Peterson K, Frank D, Harris J, Pace N. Opportunistic pathogens enriched in showerhead biofilms. PNAS. 2009;106(38):16393–9.CrossRefGoogle Scholar
  18. 18.
    Mangione EJ, Huitt G, Lenaway D, Beebe J, Bailey A, Figoski M, et al. Nontuberculous mycobacterial disease following hot tub exposure. Emerg Infect Dis. 2001;7(6):1039.CrossRefGoogle Scholar
  19. 19.
    Falkinham JO III. Ecology of nontuberculous mycobacteria – where do human infections come from? Semin Respir Crit Care Med. 2013;34(1):95–102.CrossRefGoogle Scholar
  20. 20.
    Assi MA, Beg JC, Marshall WF, et al. Mycobacterium gordonae pulmonary disease associated with a continuous positive airway pressure device. Transpl Infect Dis. 2007;9(3):249–52.CrossRefGoogle Scholar
  21. 21.
    Iivanainen E, Northrup J, Arbeit RD, Ristola M, Katila M-L, Von Reyn CF. Isolation of mycobacteria from indoor swimming pools in Finland. APMIS. 1999;107:193–200.CrossRefGoogle Scholar
  22. 22.
    De Groote MA, Pace NR, Fulton K, Falkinham JO. Relationships between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl Environ Microbiol. 2006;72:7602–6.CrossRefGoogle Scholar
  23. 23.
    Iivanainen E, Martikainen P, Raisanen M, Katila M. Mycobacteria in coniferous forest soils. FEMS Microbiol Ecol. 1997;23(4):325–32.CrossRefGoogle Scholar
  24. 24.
    Dawson D. Potential pathogens among strains of mycobacteria isolated from house-dusts. Med J Aust. 1971;1:679–81.PubMedGoogle Scholar
  25. 25.
    Torvinen E, Torkko P, Rintala ANH. Real-time PCR detection of environmental mycobacteria in house dust. J Microbiol Methods. 2010;82:78–84.CrossRefGoogle Scholar
  26. 26.
    Falkinham JO III, Norton CD, LeChevallier MW. Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl Environ Microbiol. 2001;67(3):1225–31.CrossRefGoogle Scholar
  27. 27.
    Bendinger B, Rijnaarts HHM, Altendorf K, et al. Physicochemical cell surface and adhesive properties of Coryneform Bacteria related to the presence and chain length of Mycolic acids. Appl Environ Microbiol. 1993;59(11):3973–7.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Stelmack PL, Gray MR, Pickard MA. Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol. 1999;65(1):163–8.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Mullis SN, Falkinham JO III. Adherence and biofilm formation of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium abscessus to household plumbing materials. J Appl Microbiol. 2013;115(3):908–14.CrossRefGoogle Scholar
  30. 30.
    Norton CD, LeChevallier MW, Falkinham JO III. Survival of Mycobacterium avium in a model distribution system. Water Res. 2004;38:1457–66.CrossRefGoogle Scholar
  31. 31.
    Pelletier PA, du Moulin GC, Stottmeier KD. Mycobacteria in public water supplies: comparative resistance to chlorine. Microbiol Sci. 1988;5(5):147–8.PubMedGoogle Scholar
  32. 32.
    du Moulin GC, Sherman IH, Hoaglin DC, et al. Mycobacterium avium complex, an emerging pathogen in Massachusetts. J Clin Microbiol. 1985;22(1):9–12.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Norton CD, LeChevallier M. A pilot study of bacteriological population changes through potable water treatment and distribution. Appl Environ Microbiol. 2000;66(1):268–76.CrossRefGoogle Scholar
  34. 34.
    Sousa S, Bandeira M, Carvalho PA, Duarte A, Jordao L. Nontuberculous mycobacteria pathogenesis and biofilm assembly. Int J Mycobacteriol. 2015;4:36–43.CrossRefGoogle Scholar
  35. 35.
    Lumb R, Stapledon R, Scroop A, Bond P, et al. Investigation of spa pools associated with lung disorders caused by Mycobacterium avium complex in immunocompetent adults. Appl Environ Microbiol. 2004;70:4906–10.CrossRefGoogle Scholar
  36. 36.
    Joseph O, Falkinham JO III. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis. 2011;17(3):419–24.CrossRefGoogle Scholar
  37. 37.
    Nishiuchi Y, Maekura R, Kitada S, et al. The recovery of Mycobacterium avium-intracellulare complex (MAC) from the residential bathrooms of patients with pulmonary MAC. Clin Infect Dis. 2007;45(3):347–51.CrossRefGoogle Scholar
  38. 38.
    Lande L, Peterson D, Sawicki J, et al. Municipal water supply as a major source for Mycobacterium Avium pulmonary disease: a comparison of household and respiratory isolates. Am J Respir Crit Care Med. 2013;187:A5100.Google Scholar
  39. 39.
    Whiley H, Giglio S, Bentham R. Opportunistic pathogens Mycobacterium Avium complex (MAC) and Legionella spp. Colonise Model Shower. Pathogens. 2015;4(3):590–8.CrossRefGoogle Scholar
  40. 40.
    Falkinham JO III. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol. 2009;107(2):356–67.CrossRefGoogle Scholar
  41. 41.
    Rodgers MR, Blackstone BJ, Reyes AL, Covert TC. Colonisation of point of use water filters by silver resistant non-tuberculous mycobacteria. J Clin Pathol. 1999;52(8):629.CrossRefGoogle Scholar
  42. 42.
    Strahl ED, Gillaspy GE, Falkinham JO III. Fluorescent acid fast microscopy for measuring phagocytosis of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum by Tetrahymena pyriformis and their intracellular growth. Appl Environ Microbiol. 2001;67:4432–9.CrossRefGoogle Scholar
  43. 43.
    Ovrutsky AR, Chan ED, Kartalija M, et al. Cooccurrence of free-living amoebae and nontuberculous mycobacteria in hospital water networks, and preferential growth of Mycobacterium avium in Acanthamoeba lenticulata. Appl Environ Microbiol. 2013;79(10):3185–92.CrossRefGoogle Scholar
  44. 44.
    Delafont V, Mougari F, Cambau E, et al. First evidence of amoebae-mycobacteria association in drinking water network. Environ Sci Technol. 2014;48(20):11872–82.CrossRefGoogle Scholar
  45. 45.
    Coulon C, Collignon A, McDonnell G, Thomas V. Resistance of Acanthamoeba cysts to disinfection treatments used in health care settings. J Clin Microbiol. 2010;48(8):2689–97.CrossRefGoogle Scholar
  46. 46.
    Thomas V, Bouchez T, Nicolas V, et al. Amoebae in domestic water systems: resistance to disinfection treatments and implication in Legionella persistence. J Appl Microbiol. 2004;97(5):950–63.CrossRefGoogle Scholar
  47. 47.
    Cirillo JD, Falkow S, Tompkins LS, Bermudez LE. Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect Immun. 1997;65(9):3759–67.PubMedPubMedCentralGoogle Scholar
  48. 48.
    duMoulin GC, Stottmeier KD, Pelletier PA, et al. Concentration of Mycobacterium avium by hospital hot water systems. JAMA. 1988;260:1599–601.CrossRefGoogle Scholar
  49. 49.
    Tichenor WS, Thurlow J, McNulty S, Brown-Elliott BA, Wallace RJ Jr, Falkinham JO III. Nontuberculous mycobacteria in household plumbing as possible cause of chronic rhinosinusitis. Emerg Infect Dis. 2012;18(10):1612–7.CrossRefGoogle Scholar
  50. 50.
    Schulze-Röbbecke R, Buchholtz K. Heat susceptibility of aquatic mycobacteria. Appl Environ Microbiol. 1992;58(6):1869–73.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Grant IR, Ball HJ, Rowe MT. Thermal inactivation of several Mycobacterium spp. in milk by pasteurization. Lett Appl Microbiol. 1996;22(3):253–6.CrossRefGoogle Scholar
  52. 52.
    Sebakova H, Kozisek F, Mudra R, et al. Incidence of nontuberculous mycobacteria in four hot water systems using various types of disinfection. Can J Microbiol. 2008;54(11):891–8.CrossRefGoogle Scholar
  53. 53.
    Zwadyk P Jr, Down JA, Myers N, et al. Rendering of mycobacteria safe for molecular diagnostic studies and development of a lysis method for strand displacement amplification and PCR. J Clin Microbiol. 1994 Sep;32(9):2140–6.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Black WC, Berk SG. Cooling towers – a potential environmental source of slow-growing mycobacterial species. AIHA J (Fairfax, VA). 2003;64(2):238–42.CrossRefGoogle Scholar
  55. 55.
    Adrados B, Julián E, Codony F, Torrents E, Luquin M, Morató J. Prevalence and concentration of non-tuberculous mycobacteria in cooling towers by means of quantitative PCR: a prospective study. Curr Microbiol. 2011;62(1):313–9.CrossRefGoogle Scholar
  56. 56.
    Torvinen E, Suomalainen S, Paulin L, Kusnetsov J. Mycobacteria in Finnish cooling tower waters. APMIS. 2014;122(4):353–8.CrossRefGoogle Scholar
  57. 57.
    Ichiyama S, Shimokata K, Tsukamura M. The isolation of Mycobacterium avium complex from soil, water and dusts. Microbiol Immunol. 1998;32:733–9.CrossRefGoogle Scholar
  58. 58.
    Reed C, von Reyn CF, Chamblee S, Ellerbrock TV, Johnson JW, Marsh BJ, Johnson LS, Trenschel RJ, Horsburgh CR Jr. Environmental risk factors for infection with Mycobacterium avium complex. Am J Epidemiol. 2006;164(1):32–40.CrossRefGoogle Scholar
  59. 59.
    Fujita K, Ito Y, Hirai T. Genetic relatedness of Mycobacterium avium-intracellulare complex isolates from patients with pulmonary MAC disease and their residential soils. Clin Microbiol Infect. 2013;19(6):537–41.CrossRefGoogle Scholar
  60. 60.
    Falkinham JO III. Mycobacterial aerosols and respiratory disease. Emerg Infect Dis. 2003;9(7):763–7.CrossRefGoogle Scholar
  61. 61.
    Parker BC, Ford MA, Gruft H, Falkinham JO III. Epidemiology of infection by nontuberculous mycobacteria. IV. Preferential aerosolization of Mycobacterium intracellulare from natural water. Am Rev Respir Dis. 1983;128:652–6.PubMedGoogle Scholar
  62. 62.
    Gruft H, Katz J, Blanchard DC. Postulated source of Mycobacterium intracellulare (Battey) infection. Am J Epidemiol. 1975;102:311–8.CrossRefGoogle Scholar
  63. 63.
    Wendt S, George K, Parker B. Epidemiology of infection by nontuberculous mycobacteria III. Isolation of potentially pathogenic mycobacteria from aerosols. Am Rev Respir Dis. 1980;122(2):259–63.PubMedGoogle Scholar
  64. 64.
    Wells WF. Airborne contagion and air hygiene. Cambridge, MA: Harvard University Press; 1955.Google Scholar
  65. 65.
    Zhou Y, Benson JM, Irvin C, et al. Particle size distribution and inhalation dose of shower water under selected operating conditions. Inhal Toxicol. 2007 Apr;19(4):333–42.CrossRefGoogle Scholar
  66. 66.
    Porteous NB, Redding SW, Jorgensen JH. Isolation of non-tuberculosis mycobacteria in treated dental unit waterlines. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;98(1):40–4.CrossRefGoogle Scholar
  67. 67.
    Dutil S, Veillette M, Mériaux A, et al. Aerosolization of mycobacteria and legionellae during dental treatment: low exposure despite dental unit contamination. Environ Microbiol. 2007;9(11):2836–43.CrossRefGoogle Scholar
  68. 68.
    Schulze-Röbbecke R, Feldmann C, Fischeder R, et al. Dental units: an environmental study of sources of potentially pathogenic mycobacteria. Tuber Lung Dis. 1995;76(4):318–23.CrossRefGoogle Scholar
  69. 69.
    Jr Wallace RJ, Iakhiaeva E, Williams MD, et al. Absence of Mycobacterium intracellulare and presence of Mycobacterium chimaera in household water and biofilm samples of patients in the United States with Mycobacterium avium complex respiratory disease. J Clin Microbiol. 2013;51(6):1747–52.CrossRefGoogle Scholar
  70. 70.
    Cayer MP, Veillette M, Pageau P, et al. Identification of mycobacteria in peat moss processing plants: application of molecular biology approaches. Can J Microbiol. 2007;53(1):92–9.CrossRefGoogle Scholar
  71. 71.
    Reznikov M, Leggo JH, Dawson DJ. Investigation by seroagglutination of strains of the Mycobacterium intracellulare-M. scrofulaceum group from house dusts and sputum in Southeastern Queensland. Am Rev Respir Dis. 1971;104(6):951–3.PubMedGoogle Scholar
  72. 72.
    Perkins KM, Lawsin A, Hasan NA, et al. Notes from the field: Mycobacterium chimaera contamination of heater-cooler devices used in cardiac surgery – United States. MMWR Morb Mortal Wkly Rep. 2016;65(40):1117–8.CrossRefGoogle Scholar
  73. 73.
    Sommerstein R, Rüegg C, Kohler P. Transmission of Mycobacterium chimaera from heater-cooler units during cardiac surgery despite an ultraclean air ventilation system. Emerg Infect Dis. 2016;22(6):1008–13.CrossRefGoogle Scholar
  74. 74.
    Marras TK, Daley CL. Epidemiology of human pulmonary infection with nontuberculous mycobacteria. Clin Chest Med. 2002;23:553–6.CrossRefGoogle Scholar
  75. 75.
    Hoefsloot W, van Ingen J, Andrejak C. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013;42(6):1604–13.CrossRefGoogle Scholar
  76. 76.
    Prevots DR, Adjemian J, Fernandez AG, et al. Environmental risks for nontuberculous mycobacteria. Individual exposures and climatic factors in the cystic fibrosis population. Ann Am Thorac Soc. 2014;11:1032–8.CrossRefGoogle Scholar
  77. 77.
    Maekawa K, Ito Y, Hirai T, et al. Environmental risk factors for pulmonary Mycobacterium avium-intracellulare complex disease. Chest. 2011;140:723–9.CrossRefGoogle Scholar
  78. 78.
    Lee BY, Kim S, Hong YK, et al. Risk factors for recurrence after successful treatment of Mycobacterium avium complex lung disease. Antimicrob Agents Chemother. 2015;59:2972–7.CrossRefGoogle Scholar
  79. 79.
    Boyle DP, Zembower TR, Reddy S, Qi C. Comparison of clinical features, virulence, and relapse among Mycobacterium avium complex species. Am J Respir Crit Care Med. 2015;191:1310–7.CrossRefGoogle Scholar
  80. 80.
    Field SK, Fisher D, Cowie RL. Mycobacterium avium complex pulmonary disease in patients without HIV infection. Chest. 2004;126:566–81.CrossRefGoogle Scholar
  81. 81.
    Wallace RJ Jr, Zhang Y, Brown-Elliott BA, et al. Repeat positive cultures in Mycobacterium intracellulare lung disease after macrolide therapy represent new infections in patients with nodular bronchiectasis. J Infect Dis. 2002;186:266–73.CrossRefGoogle Scholar
  82. 82.
    Boyle DP, Zembower TR, Qi C. Relapse versus reinfection of Mycobacterium avium complex pulmonary disease. Patient characteristics and macrolide susceptibility. Ann Am Thorac Soc. 2016;13:1956–61.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Pulmonary and Critical Care MedicineLankenau Medical CenterWynnewoodUSA
  2. 2.Lankenau Institute for Medical ResearchWynnewoodUSA

Personalised recommendations