Digital Technologies and Mathematics Education: Interlocutions and Contributions Based on Research Developed in Brazil

  • Maurício Rosa
  • Marcelo Bairral
  • Verônica Gitirana
  • Marcelo Borba


This chapter articulates research developed within the working group Mathematics Education: Digital Technologies and Distance Education of the Brazilian Mathematics Education Society (SBEM). To address the research foci of this group, we highlight theoretical and methodological aspects that form the framework of the studies that currently inform the work in this area in Brazil. More specifically, the paper is organized around the perspectives which are shaping the research activities of the group and include: the humans-with-media construct, which highlights the centrality of media in the productions of mathematical knowledge; computer-supported collaborative learning and the exploration of collaboration as a principle for cognitive mathematical development; factors involved in the design of digital resources for mathematics education; the use of touchscreen devices in the mathematical activity and the embodied nature of mathematical cognition; and the initial and continuing development for teachers who work with these technologies, both in the classroom and in distance education. In considering the results of these ongoing projects, collectively they contribute to a conception of education that treats digital technologies as transforming/empowering the production of mathematical knowledge, and not as auxiliaries of this process.


Cybereducation Embodied cognition Humans-with-media Instrumental genesis Online education 


  1. Araripe, J., & Bellemain, F. (2015). Interconnecting digital interfaces and semiotic representation registers: Analysis of interactions for collaborative learning supported by linear algebra objects computer. Anais do VI SIPEM. Retrieved from
  2. Araújo Filho, R. M., & Gitirana, V. (2015) Teaching skills mobilised and collaboration in online training environments. Anais do VI SIPEM. Retrieved from
  3. Arnold, S., Shiu, C., & Ellerton, N. (1996). Critical issues in the distance teaching of mathematics and mathematics education. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematic education. Netherlands: Kluwer Academic.Google Scholar
  4. Artigue, M. (1990). Ingénierie didactique. Recherches en Didactique des Mathématiques, 9(3), 281–308.Google Scholar
  5. Arzarello, F., Bairral, M., & Dané, C. (2014). Moving from dragging to touchscreen: Geometrical learning with geometric dynamic software. Teaching Mathematics and Its Applications, 33(1), 39–51. Scholar
  6. Assis, A. R., da Silva, B. C. C. C., & Bairral, M. A. (2016). Toques em tela de tablets e domínios de aprendizagem em geometria. Educação Matemática em Revista, 51, 6–14 Retrieved from Scholar
  7. Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253.CrossRefGoogle Scholar
  8. Bairral, M. A., Assis, A. R., & Silva, B. C. C. (2015a). Mãos em ação em dispositivos touchscreen na educação matemática. Rio de Janeiro: Edur.Google Scholar
  9. Bairral, M. A., Assis, A. R., & Silva, B. C. C. (2015b). Toques para ampliar interações e manipulações touchscreen na aprendizagem em geometria. Anais do VI SIPEM. Retrieved from
  10. Baker, M. (2002). Forms of cooperation in dyadic problem-solving. Revue d’intellingence Arttificielle, 16, 587–620.CrossRefGoogle Scholar
  11. Balacheff, N. (1994a). La transposition informatique. Note sur un nouveau problème pour la didactique. In Artigue et al. (Eds.), Vingt ans de didactique des mathématiques en France. Hommage à Guy Brousseau et Gérard Vergnaud (pp. 364–370). Grenoble: La Pensée Sauvage.Google Scholar
  12. Balacheff, N. (1994b). Didactique computationnelle, évocation d’un projet de recherche. Prépublication 94-07. Rennes, France: IRMAR.Google Scholar
  13. Balacheff, N. (1995). Conception, connaissance et concept. In D. Grenier (Ed.), Séminaire Didactique et Technologies Cognitives en Mathématiques (pp. 219–244). IMAG, Grenoble: IMAG.Google Scholar
  14. Bellemain, F. (2000). A transposição didática na engenharia de softwares educativos. Livro de Resumos, I SIPEM (pp. 198–204). Retrieved from
  15. Bellemain, F. G. R., Ramos, C. S., & dos Santos, R. T. (2015). Engenharia de Software Educativos, o caso do Bingo dos Racionais. Anais do VI SIPEM. Retrieved from
  16. Bittar, M. (2009). Integração da tecnologia nas aulas de matemática: Contribuições de um grupo de pesquisa-ação na formação continuada de professores. Anais IV SIPEM. Retrieved from
  17. Bolite Frant, J. B. (2011). Linguagem, Tecnologia e Corporeidade: Produção de significados para o tempo em gráficos cartesianos. Retrieved from
  18. Borba, M. C. (1999). Tecnologias Informáticas na Educação Matemática e Reorganização do Pensamento. In M. A. V. Bicudo (Ed.), Pesquisa em Educação Matemática: Concepções e Perspectivas (pp. 285–295). São Paulo, Sao Paulo: UNESP.Google Scholar
  19. Borba, M. C. (2000). GPIMEM e UNESP: Pesquisa, extensão e ensino em Informática e Educação Matemática. In M. G. Penteado & M. C. Borba (Eds.), A Informática em Ação: formação de professores, pesquisa e extensão (pp. 47–66). Rio Claro, Sao Paulo: Olho D’água.Google Scholar
  20. Borba, M. C., Malheiros, A. P. S., & Zulatto, R. B. A. (2007). Educação a distância online. Belo Horizonte, Minas Gerais: Autêntica.Google Scholar
  21. Borba, M. C., & Villarreal, M. V. (2005). Humans-with-media and the reorganization of mathematical thinking: Information and communication technologies, modeling, experimentation and visualization (Vol. 39). New York: Springer.Google Scholar
  22. Botzer, G., & Yerushalmy, M. (2008). Embodied semiotic activities and their role in the construction of mathematical meaning of motion graphs. International Journal of Computer in Mathematics Learning, 13, 111–134. Scholar
  23. Carvalho, M. (2015). Formação inicial do professor de matemática: utilização das TIC, dispositivos touchscreen dos tablets, no Estágio Supervisionado. Boletim Gepem, 67, 71–83.Google Scholar
  24. Cress, U., Stahl, G., Ludvigsen, S., & Law, N. (2015). The core features of CSCL: Social situation, collaborative knowledge processes and their design. International Journal of Computer-Supported Collaborative Learning, 10(2), 109–132.Google Scholar
  25. D’Ambrosio, U., & Borba, M. C. (2010). Dynamics of change of mathematics education in Brazil and a scenario of current research. ZDM Mathematics Education, 42, 271–279.CrossRefGoogle Scholar
  26. Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning with instructional design. In P. A. Kirschner (Ed.), Three worlds of CSCL: Can we support CSCL? (pp. 61–69). Heerlen, Nederland: Open Universiteit.Google Scholar
  27. Engeström, Y. (1987). Learning by Expanding: An activity-theoretical approach to developmental research. Orienta-Konsultit: Helsinki.Google Scholar
  28. Engeström, Y. (1999). Learning by expanding: Ten years after. Retrieved from
  29. Galvis, A. H. (1992). Ingeniería de Software Educativo. Santafé de Bogotá: Ediciones Uniandes.Google Scholar
  30. Gitirana, V., Teles, R. A. M., Bellemain, P. M. B., Castro, A. T., Almeida, I. A. C., Lima, P. F., & Bellemain, F. (2013). Jogos com Sucata na Educação Matemática. Recife, Pernambuco: Editora Universitária da UFPE.Google Scholar
  31. Heidegger, M. (1996). Being and time. Albany: State University of New York Press.Google Scholar
  32. Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action. Psychonomic Bulletin & Review, 15(3), 495–514.CrossRefGoogle Scholar
  33. Itacarambi, R. R. (2000). Formação contínua de professores comunicadores de matemática: da sala de aula à internet. Livro de Resumos, I SIPEM. Retrieved from
  34. Leontiev, A. N. (1978). O desenvolvimento do psiquismo. Livros Horizonte, Lisboa.Google Scholar
  35. Leung, A. (2011). An epistemic model of task design in dynamic geometry environment. ZDM Mathematics Education, 43(3), 325–336. Scholar
  36. Lévy, P. (1994). As Tecnologias da Inteligência: o futuro do pensamento na era da informática. (Carlos Irineu da Costa, Trans.). São Paulo, Sao Paulo: Editora 34. (Original work published 1990)Google Scholar
  37. Lévy, P. (2000). A Inteligência Coletiva. (Luiz Paulo Rouanet, Trans.). São Paulo, Sao Paulo: Edições Loyola. (Original work published 1997)Google Scholar
  38. Lima, R. (2015). Window of SimCalc World: A possibility for the teaching of function concept. Anais do VI SIPEM. Retrieved from
  39. Llinares, S., & Valls, J. (2009). The building of pre-service primary teachers’ knowledge of mathematics teaching: Interaction and online video case studies. Instructional Science, 37(3), 247–271.CrossRefGoogle Scholar
  40. Lucena, R., & Gitirana, V. (2015). The online tutoring didactic settings: The choice of resources for didactic tutor mediation. Anais do VI SIPEM. Retrieved from
  41. McGraw, R., Lynch, K., Koc, Y., Budak, A., & Brown, C. A. (2007). The multimedia case as a tool for professional development: An analysis of online and face-to-face interaction among mathematics pre-service teachers, in-service teachers, mathematicians, and mathematics teacher educators. Journal of Mathematics Teacher Education, 10(2), 95–121.CrossRefGoogle Scholar
  42. Melo, M. S. L., Montenegro, G. M. M., Santos, L. S., Moraes, M. D., & Bellemain, P. M. B. (2013). Bingo dos Números Racionais – Indicações Didáticas. Projeto Rede na Educação Matemática. Recife, Pernambuco: NEMAT/UFPE.Google Scholar
  43. Miskulin, R. G. S., Silva, M. R. C., & Rosa, M. (2006). Comunidade Virtual como lócus do Resgate da Cultura Docente: contribuições para a formação continuada do professor de matemática. Anais do III SIPEM. Retrieved from
  44. Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. New York: Basic Books.Google Scholar
  45. Radford, L. (2014). Towards an embodied, cultural, and material conception of mathematics cognition. ZDM Mathematics Education, 46(3), 349–361.CrossRefGoogle Scholar
  46. Rosa, M. (2008). A Construção de Identidades Online por meio do Role Playing Game: relações com o ensino e aprendizagem de matemática em um curso à distância. Unpublished doctoral dissertation in Mathematics Education – Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Rio Claro, Brazil.Google Scholar
  47. Rosa, M. (2010). Cybereducation: Focusing the education of teachers towards Online Mathematics Education. In M. Pinto & T. Kawasaki (Eds.), Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education. PME Group: Belo Horizonte, Minas Gerais.Google Scholar
  48. Rosa, M. (2015). Cyberformação com professores de matemática: interconexões com experiências estéticas na cultura digital. In M. Rosa, M. A. Bairral, & R. B. Amaral (Eds.), Educação Matemática, Tecnologias Digitais e Educação a Distância: pesquisas contemporâneas (pp. 57–96). São Paulo, Sao Paulo: Livraria da Física.Google Scholar
  49. Rosa, M., & Pazuch, V. (2015). Cybereducation with mathematics teachers in a b-learning course: Constituting a collaboration space. Anais do VI SIPEM. Retrieved from
  50. Scherer, S., & Silva, L. Q. D. (2014). Formação de professores para o uso de laptops educacionais: reflexões sobre o ensino de geometria (Abstract). RIE Digital, 66(2). Retrieved from
  51. Sinclair, N., & Robutti, O. (2013). Technology and the role of proof: The case of dynamic geometry. In M. A. K. Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Third international handbook of mathematics education (pp. 571–596). New York: Springer.Google Scholar
  52. Souto, D. L. P. (2015). Aprendizagem Matemática on-line: quando tensões geram conflitos. Educação Matemática Pesquisa, 17(5).Google Scholar
  53. Souto, D. L. P., & Borba, M. C. (2015). Movimentos, estagnações, tensões e transformações na aprendizagem da matemática on-line. Anais do VI SIPEM. Retrieved from
  54. Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collaborative learning. In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 196–223). Cambridge, UK: Cambridge University Press.Google Scholar
  55. Tchounikine, P. (2009). Précis de recherche de Ingénierie des EIAH. Retrieved from
  56. Tikhomirov, O. K. (1981). The psychological consequences of computerization. In J. V. Wertsch (Ed.), The concept of activity in Soviet psychology. (James V. Wertsch, Transl). New York: M. E. Sharpe.Google Scholar
  57. Trouche, L. (2005). Construction et conduit des instruments dans les apprentissages mathématiques: nécessité des orchestrations. Recherches en Didactique des Mathématiques, 25, 91–138.Google Scholar
  58. Valente, J. A. (2005). A espiral da espiral de aprendizagem: o processo de compreensão do papel das tecnologias de informação e comunicação. Unpublished full professor thesis/ livre docência – Universidade Estadual de Campinas. Instituto de Artes, São Paulo.Google Scholar
  59. Verillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of though in relation to instrumented activity. European Journal of Psychology of education, 10(1), 77–101.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Maurício Rosa
    • 1
  • Marcelo Bairral
    • 2
  • Verônica Gitirana
    • 3
  • Marcelo Borba
    • 4
  1. 1.Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Universidade Federal Rural do Rio de JaneiroSeropédicaBrazil
  3. 3.Universidade Federal de PernambucoRecifeBrazil
  4. 4.Universidade Estadual PaulistaRio ClaroBrazil

Personalised recommendations