Advertisement

Developmental Defects of Enamel

  • Paulo M. Yamaguti
  • Renata N. Cabral
Chapter

Abstract

Developmental defects of enamel (DDE) can be caused by any local, systemic, environmental, or genetic factor that disturbs amelogenesis (1). The affected enamel phenotype ranges from small opacities to total enamel absence, depending on the time, type, and intensity of the disturbance. Clinically, the heterogeneous clinical manifestation and lack of treatment protocols make diagnosis and treatment a difficult challenge for the professionals. In this chapter, three different developmental defects that usually affect a group of teeth or all dentition are presented: amelogenesis imperfecta (AI), fluorosis, and molar and incisor hypomineralization (MIH). This chapter aims to revise the current knowledge in the DDE molecular etiology, to define the three different conditions and to discuss the differential diagnosis. Some treatment options are also presented.

Keywords

Developmental defects of enamel Amelogenesis imperfecta Fluorosis Molar and incisor hypomineralization 

References

  1. 1.
    Pindborg JJ. Aetiology of developmental enamel defects not related to fluorosis. Int Dent J. 1982;32(2):123–34.PubMedGoogle Scholar
  2. 2.
    FDI Working Group. A review of the developmental defects of enamel index (DDE index). Commission on oral health, research & epidemiology. Report of an FDI working group. Int Dent J. 1992;42(6):411–26.Google Scholar
  3. 3.
    Warshawsky H, Smith CE. Morphological classification of rat incisor ameloblasts. Anat Rec. 1974;179(4):423–46.PubMedCrossRefGoogle Scholar
  4. 4.
    Bartlett JD, Smith CE. Modulation of cell-cell junctional complexes by matrix metalloproteinases. J Dent Res. 2013;92(1):10–7.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Smith CE. Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med. 1998;9(2):128–61.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Smith CEL, et al. Amelogenesis imperfecta; genes, proteins, and pathways. Front Physiol. 2017;8:435.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Moradian-Oldak J. Protein-mediated enamel mineralization. Front Biosci (Landmark Ed). 2012;17:1996–2023.CrossRefGoogle Scholar
  8. 8.
    Robinson C, et al. Matrix and mineral changes in developing enamel. J Dent Res. 1979;58(Spec Issue B):871–82.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Robinson C, et al. Enamel maturation. Ciba Found Symp. 1997;205:156–70. discussion 170–4PubMedPubMedCentralGoogle Scholar
  10. 10.
    Simmer JP, Hu JC. Expression, structure, and function of enamel proteinases. Connect Tissue Res. 2002;43(2–3):441–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bronckers AL, et al. Buffering of protons released by mineral formation during amelogenesis in mice. Eur J Oral Sci. 2016;124(5):415–25.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Bronckers AL. Ion transport by ameloblasts during amelogenesis. J Dent Res. 2017;96(3):243–53.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Varga G, et al. Importance of bicarbonate transport in pH control during amelogenesis - need for functional studies. Oral Dis. 2017.  https://doi.org/10.1111/odi.12738.
  14. 14.
    Yin K, Paine ML. Bicarbonate transport during enamel maturation. Calcif Tissue Int. 2017;101(5):457–64.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Jalali R, et al. NBCe1 (SLC4A4) a potential pH regulator in enamel organ cells during enamel development in the mouse. Cell Tissue Res. 2014;358(2):433–42.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lacruz RS, et al. Requirements for ion and solute transport, and pH regulation during enamel maturation. J Cell Physiol. 2012;227(4):1776–85.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Bardet C, et al. Claudin loss-of-function disrupts tight junctions and impairs amelogenesis. Front Physiol. 2017;8:326.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Bardet C, et al. Claudin-16 deficiency impairs tight junction function in ameloblasts, leading to abnormal enamel formation. J Bone Miner Res. 2016;31(3):498–513.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Varga G, et al. Function and repair of dental enamel - potential role of epithelial transport processes of ameloblasts. Pancreatology. 2015;15(4 Suppl):S55–60.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Hata M, et al. Differential expression patterns of the tight junction-associated proteins occludin and claudins in secretory and mature ameloblasts in mouse incisor. Med Mol Morphol. 2010;43(2):102–6.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Yamaguti PM, et al. Amelogenesis imperfecta in familial hypomagnesaemia and hypercalciuria with nephrocalcinosis caused by CLDN19 gene mutations. J Med Genet. 2017;54(1):26–37.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Simmer JP, et al. Ameloblast transcriptome changes from secretory to maturation stages. Connect Tissue Res. 2014;55(Suppl 1):29–32.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Wright JT, Butler WT. Alteration of enamel proteins in hypomaturation amelogenesis imperfecta. J Dent Res. 1989;68(9):1328–30.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lagerström M, et al. A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1). Genomics. 1991;10(4):971–5.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Hart PS, et al. Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. J Med Genet. 2004;41(7):545–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Kim JW, et al. MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta. J Med Genet. 2005;42(3):271–5.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kim JW, et al. Mutational analysis of candidate genes in 24 amelogenesis imperfecta families. Eur J Oral Sci. 2006;114(Suppl 1):3–12. discussion 39–41, 379.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Wang XJ, et al. Exclusion of candidate genes in a family with amelogenesis imperfecta. Hua Xi Kou Qiang Yi Xue Za Zhi. 2007;25(3):249–52.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Becerik S, et al. Exclusion of candidate genes in seven Turkish families with autosomal recessive amelogenesis imperfecta. Am J Med Genet A. 2009;149A(7):1392–8.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Aldred MJ, Crawford PJ. Amelogenesis imperfecta--towards a new classification. Oral Dis. 1995;1(1):2–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Aldred MJ, Crawford PJ. Molecular biology of hereditary enamel defects. Ciba Found Symp. 1997;205:200–5. discussion 205–9PubMedGoogle Scholar
  32. 32.
    Aldred MJ, Savarirayan R, Crawford PJ. Amelogenesis imperfecta: a classification and catalogue for the 21st century. Oral Dis. 2003;9(1):19–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Sundell S. Hereditary amelogenesis imperfecta. An epidemiological, genetic and clinical study in a Swedish child population. Swed Dent J Suppl. 1986;31:1–38.PubMedGoogle Scholar
  34. 34.
    Bäckman B, Holm AK. Amelogenesis imperfecta: prevalence and incidence in a northern Swedish county. Community Dent Oral Epidemiol. 1986;14(1):43–7.PubMedCrossRefGoogle Scholar
  35. 35.
    de la Dure-Molla M, et al. Pathognomonic oral profile of enamel renal syndrome (ERS) caused by recessive FAM20A mutations. Orphanet J Rare Dis. 2014;9:84.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Coffield KD, et al. The psychosocial impact of developmental dental defects in people with hereditary amelogenesis imperfecta. J Am Dent Assoc. 2005;136(5):620–30.PubMedCrossRefGoogle Scholar
  37. 37.
    Keenan AV. No trial evidence for restorative interventions in children and adolescents with amelogenesis imperfecta. Evid Based Dent. 2014;15(2):45.PubMedCrossRefGoogle Scholar
  38. 38.
    Ekambaram M, et al. Comparison of deproteinization agents on bonding to developmentally hypomineralized enamel. J Dent. 2017;67:94–101.PubMedCrossRefGoogle Scholar
  39. 39.
    Pugach MK, et al. Shear bond strength of dentin and deproteinized enamel of amelogenesis imperfecta mouse incisors. Pediatr Dent. 2014;36(5):130–6.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Pousette Lundgren G, et al. Amelogenesis imperfecta and early restorative crown therapy: an interview study with adolescents and young adults on their experiences. PLoS One. 2016;11(6):e0156879.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Strauch S, Hahnel S. Restorative treatment in patients with amelogenesis imperfecta: a review. J Prosthodont. 2018.  https://doi.org/10.1111/jopr.12736.
  42. 42.
    Fejerskov O, Thylstrup A, Larsen MJ. Clinical and structural features and possible pathogenic mechanisms of dental fluorosis. Scand J Dent Res. 1977;85(7):510–34.PubMedGoogle Scholar
  43. 43.
    DenBesten PK, et al. Fluoride incorporation into apatite crystals delays amelogenin hydrolysis. Eur J Oral Sci. 2011;119(Suppl 1):3–7.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Sharma R, et al. Assessment of dental fluorosis in Mmp20 +/− mice. J Dent Res. 2011;90(6):788–92.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Lyaruu DM, et al. Barrier formation: potential molecular mechanism of enamel fluorosis. J Dent Res. 2014;93(1):96–102.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Martinez-Mier EA, Lippert F. Teeth with mild and moderate enamel fluorosis demonstrate increased caries susceptibility in vitro. J Evid Based Dent Pract. 2017;17(3):293–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Marín LM, et al. Higher fluorosis severity makes enamel less resistant to demineralization. Caries Res. 2016;50(4):407–13.PubMedCrossRefGoogle Scholar
  48. 48.
    Buzalaf MA, Levy SM. Fluoride intake of children: considerations for dental caries and dental fluorosis. Monogr Oral Sci. 2011;22:1–19.PubMedCrossRefGoogle Scholar
  49. 49.
    Noronha MoS, et al. Effect of fluoride concentration on reduction of enamel demineralization according to the cariogenic challenge. Braz Dent J. 2016;27(4):393–8.CrossRefGoogle Scholar
  50. 50.
    Iheozor-Ejiofor Z, et al. Water fluoridation for the prevention of dental caries. Cochrane Database Syst Rev. 2015;6:CD010856.Google Scholar
  51. 51.
    Goodarzi F, et al. The prevalence of dental fluorosis and exposure to fluoride in drinking water: a systematic review. J Dent Res Dent Clin Dent Prospects. 2016;10(3):127–35.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Pramanik S, Saha D. The genetic influence in fluorosis. Environ Toxicol Pharmacol. 2017;56:157–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Gupta A, Dhingra R, Chaudhuri P. A comparison of various minimally invasive techniques for the removal of dental fluorosis stains in children. J Indian Soc Pedod Prev Dent. 2017;35(3):260–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Weerheijm KL, Mejàre I. Molar incisor hypomineralization: a questionnaire inventory of its occurrence in member countries of the European academy of paediatric dentistry (EAPD). Int J Paediatr Dent. 2003;13(6):411–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Elfrink ME, et al. Standardised studies on molar incisor hypomineralisation (MIH) and hypomineralised second primary molars (HSPM): a need. Eur Arch Paediatr Dent. 2015;16(3):247–55.PubMedCrossRefGoogle Scholar
  56. 56.
    da Silva Figueiredo Sé MJ, et al. Are hypomineralized primary molars and canines associated with molar-incisor hypomineralization? Pediatr Dent. 2017;39(7):445–9.PubMedGoogle Scholar
  57. 57.
    Farah RA, et al. Protein content of molar-incisor hypomineralisation enamel. J Dent. 2010;38(7):591–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Preusser SE, et al. Prevalence and severity of molar incisor hypomineralization in a region of Germany -- a brief communication. J Public Health Dent. 2007;67(3):148–50.PubMedCrossRefGoogle Scholar
  59. 59.
    Weerheijm KL, et al. Judgement criteria for molar incisor hypomineralisation (MIH) in epidemiologic studies: a summary of the European meeting on MIH held in Athens, 2003. Eur J Paediatr Dent. 2003;4(3):110–3.PubMedGoogle Scholar
  60. 60.
    Grossi JA, Cabral RN, Leal SC. Caries experience in children with and without molar-incisor hypomineralisation: a case-control study. Caries Res. 2017;51(4):419–24.PubMedCrossRefGoogle Scholar
  61. 61.
    da Costa-Silva CM, et al. Molar incisor hypomineralization: prevalence, severity and clinical consequences in Brazilian children. Int J Paediatr Dent. 2010;20(6):426–34.PubMedCrossRefGoogle Scholar
  62. 62.
    Da Costa-Silva CM, et al. Increase in severity of molar-incisor hypomineralization and its relationship with the colour of enamel opacity: a prospective cohort study. Int J Paediatr Dent. 2011;21(5):333–41.PubMedCrossRefGoogle Scholar
  63. 63.
    Cho SY, Ki Y, Chu V. Molar incisor hypomineralization in Hong Kong Chinese children. Int J Paediatr Dent. 2008;18(5):348–52.PubMedCrossRefGoogle Scholar
  64. 64.
    Soviero V, et al. Prevalence and distribution of demarcated opacities and their sequelae in permanent 1st molars and incisors in 7 to 13-year-old Brazilian children. Acta Odontol Scand. 2009;67(3):170–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhao D, et al. The prevalence of molar incisor hypomineralization: evidence from 70 studies. Int J Paediatr Dent. 2018;28(2):170–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Koch G, et al. Epidemiologic study of idiopathic enamel hypomineralization in permanent teeth of Swedish children. Community Dent Oral Epidemiol. 1987;15(5):279–85.PubMedCrossRefGoogle Scholar
  67. 67.
    Weerheijm KL, Jälevik B, Alaluusua S. Molar-incisor hypomineralisation. Caries Res. 2001;35(5):390–1.PubMedCrossRefGoogle Scholar
  68. 68.
    de Oliveira DC, Favretto CO, Cunha RF. Molar incisor hypomineralization: considerations about treatment in a controlled longitudinal case. J Indian Soc Pedod Prev Dent. 2015;33(2):152–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Silva MJ, et al. Etiology of molar incisor hypomineralization - a systematic review. Community Dent Oral Epidemiol. 2016;44(4):342–53.PubMedCrossRefGoogle Scholar
  70. 70.
    Serna C, et al. Drugs related to the etiology of molar incisor hypomineralization: a systematic review. J Am Dent Assoc. 2016;147(2):120–30.PubMedCrossRefGoogle Scholar
  71. 71.
    Kühnisch J, et al. Genome-wide association study (GWAS) for molar-incisor hypomineralization (MIH). Clin Oral Investig. 2014;18(2):677–82.PubMedCrossRefGoogle Scholar
  72. 72.
    Teixeira RJPB, et al. Exploring the association between genetic and environmental factors and molar incisor hypomineralization: evidence from a twin study. Int J Paediatr Dent. 2018;28(2):198–206.PubMedCrossRefGoogle Scholar
  73. 73.
    Elfrink ME, et al. Pre- and postnatal determinants of deciduous molar hypomineralisation in 6-year-old children. The generation R study. PLoS One. 2014;9(7):e91057.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Garot E, Manton D, Rouas P. Peripartum events and molar-incisor hypomineralisation (MIH) amongst young patients in Southwest France. Eur Arch Paediatr Dent. 2016;17(4):245–50.PubMedCrossRefGoogle Scholar
  75. 75.
    Krishnan R, Ramesh M, Chalakkal P. Prevalence and characteristics of MIH in school children residing in an endemic fluorosis area of India: an epidemiological study. Eur Arch Paediatr Dent. 2015;16(6):455–60.PubMedCrossRefGoogle Scholar
  76. 76.
    Lygidakis NA. Treatment modalities in children with teeth affected by molar-incisor enamel hypomineralisation (MIH): a systematic review. Eur Arch Paediatr Dent. 2010;11(2):65–74.PubMedCrossRefGoogle Scholar
  77. 77.
    Crombie FA, et al. Characterisation of developmentally hypomineralised human enamel. J Dent. 2013;41(7):611–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Suckling GW, Nelson DG, Patel MJ. Macroscopic and scanning electron microscopic appearance and hardness values of developmental defects in human permanent tooth enamel. Adv Dent Res. 1989;3(2):219–33.PubMedCrossRefGoogle Scholar
  79. 79.
    Farah RA, et al. Mineral density of hypomineralised enamel. J Dent. 2010;38(1):50–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Mahoney EK, et al. Mechanical properties and microstructure of hypomineralised enamel of permanent teeth. Biomaterials. 2004;25(20):5091–100.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Oliver K, et al. Distribution and severity of molar hypomineralisation: trial of a new severity index. Int J Paediatr Dent. 2014;24(2):131–51.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kalkani M, et al. Molar incisor hypomineralisation: experience and perceived challenges among dentists specialising in paediatric dentistry and a group of general dental practitioners in the UK. Eur Arch Paediatr Dent. 2016;17(2):81–8.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Rodd HD, et al. Pulpal expression of TRPV1 in molar incisor hypomineralisation. Eur Arch Paediatr Dent. 2007;8(4):184–8.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Jälevik B, Klingberg G. Treatment outcomes and dental anxiety in 18-year-olds with MIH, comparisons with healthy controls - a longitudinal study. Int J Paediatr Dent. 2012;22(2):85–91.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Jälevik B, Klingberg GA. Dental treatment, dental fear and behaviour management problems in children with severe enamel hypomineralization of their permanent first molars. Int J Paediatr Dent. 2002;12(1):24–32.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Lygidakis NA, et al. Best clinical practice guidance for clinicians dealing with children presenting with molar-incisor-hypomineralisation (MIH): an EAPD policy document. Eur Arch Paediatr Dent. 2010;11(2):75–81.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    William V, Messer LB, Burrow MF. Molar incisor hypomineralization: review and recommendations for clinical management. Pediatr Dent. 2006;28(3):224–32.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Fagrell TG, et al. Chemical, mechanical and morphological properties of hypomineralized enamel of permanent first molars. Acta Odontol Scand. 2010;68(4):215–22.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Fayle SA. Molar incisor hypomineralisation: restorative management. Eur J Paediatr Dent. 2003;4(3):121–6.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Bullio Fragelli CM, et al. Longitudinal evaluation of the structural integrity of teeth affected by molar incisor hypomineralisation. Caries Res. 2015;49(4):378–83.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Zagdwon AM, Fayle SA, Pollard MA. A prospective clinical trial comparing preformed metal crowns and cast restorations for defective first permanent molars. Eur J Paediatr Dent. 2003;4(3):138–42.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Fragelli CMB, et al. Molar incisor hypomineralization (MIH): conservative treatment management to restore affected teeth. Braz Oral Res. 2015;29(1):1–7.CrossRefGoogle Scholar
  93. 93.
    Elhennawy K, Schwendicke F. Managing molar-incisor hypomineralization: a systematic review. J Dent. 2016;55:16–24.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Ghanim A, et al. A practical method for use in epidemiological studies on enamel hypomineralisation. Eur Arch Paediatr Dent. 2015;16(3):235–46.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Weerheijm K. Western industralised countries optimistic picture from the beginning of the 20th century. Eur J Paediatr Dent. 2004;5(2):59–60.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Taniguchi K, et al. The effect of mechanical trauma on the tooth germ of rat molars at various developmental stages: a histopathological study. Endod Dent Traumatol. 1999;15(1):17–25.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Lenzi MM, et al. Does trauma in the primary dentition cause sequelae in permanent successors? A systematic review. Dent Traumatol. 2015;31(2):79–88.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Dahllöf G, et al. Histologic changes in dental morphology induced by high dose chemotherapy and total body irradiation. Oral Surg Oral Med Oral Pathol. 1994;77(1):56–60.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Minicucci EM, Lopes LF, Crocci AJ. Dental abnormalities in children after chemotherapy treatment for acute lymphoid leukemia. Leuk Res. 2003;27(1):45–50.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Jaffe N, et al. Dental and maxillofacial abnormalities in long-term survivors of childhood cancer: effects of treatment with chemotherapy and radiation to the head and neck. Pediatrics. 1984;73(6):816–23.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Jedeon K, et al. Estrogen and bisphenol A affect male rat enamel formation and promote ameloblast proliferation. Endocrinology. 2014;155(9):3365–75.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    DenBesten PK, et al. Effects of fluoride on rat dental enamel matrix proteinases. Arch Oral Biol. 2002;47(11):763–70.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    McDonagh MS, et al. Systematic review of water fluoridation. BMJ. 2000;321(7265):855–9.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Perumal E, et al. A brief review on experimental fluorosis. Toxicol Lett. 2013;223(2):236–51.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Wuollet E, et al. Molar-incisor hypomineralization and the association with childhood illnesses and antibiotics in a group of Finnish children. Acta Odontol Scand. 2016;74(5):416–22.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    de Souza JF, et al. Amoxicillin diminishes the thickness of the enamel matrix that is deposited during the secretory stage in rats. Int J Paediatr Dent. 2016;26(3):199–210.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Salmela E, et al. Combined effect of fluoride and 2,3,7,8-tetrachlorodibenzo-p-dioxin on mouse dental hard tissue formation in vitro. Arch Toxicol. 2011;85(8):953–63.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Stagno S, et al. Defects of tooth structure in congenital cytomegalovirus infection. Pediatrics. 1982;69(5):646–8.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Jaskoll T, et al. Cytomegalovirus induces stage-dependent enamel defects and misexpression of amelogenin, enamelin and dentin sialophosphoprotein in developing mouse molars. Cells Tissues Organs. 2010;192(4):221–39.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Kusku OO, Caglar E, Sandalli N. The prevalence and aetiology of molar-incisor hypomineralisation in a group of children in Istanbul. Eur J Paediatr Dent. 2008;9(3):139–44.PubMedGoogle Scholar
  111. 111.
    Yamaguti PM, Arana-Chavez VE, Acevedo AC. Changes in amelogenesis in the rat incisor following short-term hypocalcaemia. Arch Oral Biol. 2005;50(2):185–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Ranggård L, Norén JG. Effect of hypocalcemic state on enamel formation in rat maxillary incisors. Scand J Dent Res. 1994;102(5):249–53.PubMedGoogle Scholar
  113. 113.
    Sabandal MM, et al. Review of the dental implications of X-linked hypophosphataemic rickets (XLHR). Clin Oral Investig. 2015;19(4):759–68.PubMedCrossRefGoogle Scholar
  114. 114.
    Sóñora C, et al. Enamel organ proteins as targets for antibodies in celiac disease: implications for oral health. Eur J Oral Sci. 2016;124(1):11–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Nieri M, et al. Enamel defects and aphthous stomatitis in celiac and healthy subjects: systematic review and meta-analysis of controlled studies. J Dent. 2017;65:1–10.PubMedCrossRefGoogle Scholar
  116. 116.
    Ranggård L, et al. Clinical and histologic appearance in enamel of primary teeth from children with neonatal hypocalcemia induced by blood exchange transfusion. Acta Odontol Scand. 1995;53(2):123–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Zerofsky M, et al. Effects of early vitamin D deficiency rickets on bone and dental health, growth and immunity. Matern Child Nutr. 2016;12(4):898–907.PubMedCrossRefGoogle Scholar
  118. 118.
    Prasad MK, et al. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement. J Med Genet. 2016;53(2):98–110.PubMedCrossRefGoogle Scholar
  119. 119.
    Parry DA, et al. Mutations in the pH-sensing G-protein-coupled receptor GPR68 cause amelogenesis imperfecta. Am J Hum Genet. 2016;99(4):984–90.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Garg N, et al. Essentiality of early diagnosis of molar incisor hypomineralization in children and review of its clinical presentation, etiology and management. Int J Clin Pediatr Dent. 2012;5(3):190–6.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Paulo M. Yamaguti
    • 1
  • Renata N. Cabral
    • 2
  1. 1.Oral Care Center for Inherited Diseases, Oral Health Unit, University Hospital of BrasiliaUniversity of BrasiliaBrasiliaBrazil
  2. 2.Pediatric Dentistry in Private PracticeBrasiliaBrazil

Personalised recommendations