Advertisement

Modeling and Preserving Greek Government Decisions Using Semantic Web Technologies and Permissionless Blockchains

  • Themis Beris
  • Manolis Koubarakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10843)

Abstract

We present a re-engineering of Diavgeia, the Greek government portal for open and transparent public administration. We study how decisions of Greek government institutions can be modeled using ontologies expressed in OWL and queried using SPARQL. We also discuss how to use the bitcoin blockchain, to enable government decisions to remain immutable. We provide an open source implementation, called DiavgeiaRedefined, that generates and visualizes the decisions inside a web browser, offers a SPARQL endpoint for retrieving and querying these decisions and provides citizens an automated tool for verifying correctness and detecting possible foul play by an adversary. We conclude with experimental results illustrating that our scheme is efficient and feasible.

Keywords

Linked open data Blockchain Open government Semantic Web Bitcoin Tamper-proof Public services 

References

  1. 1.
    Chalkidis, I., Nikolaou, C., Soursos, P., Koubarakis, M.: Modeling and querying Greek legislation using semantic web technologies. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 591–606. Springer, Cham (2017)CrossRefGoogle Scholar
  2. 2.
    Cucurull, J., Puiggalí, J.: Distributed immutabilization of secure logs. In: Barthe, G., Markatos, E., Samarati, P. (eds.) STM 2016. LNCS, vol. 9871, pp. 122–137. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46598-2_9CrossRefGoogle Scholar
  3. 3.
    Casanovas, P., Palmirani, M., Peroni, S., van Engers, T.M., Vitali, F.: Semantic web for the legal domain: the next step. Semant. Web 7(3), 213–227 (2016)CrossRefGoogle Scholar
  4. 4.
    Hoekstra, R.: The MetaLex document server - legal documents as versioned linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7032, pp. 128–143. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25093-4_9CrossRefGoogle Scholar
  5. 5.
    Frosterus, M., Tuominen, J., Wahlroos, M., Hyvönen, E.: The finnish law as a linked data service. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 289–290. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41242-4_46CrossRefGoogle Scholar
  6. 6.
    ELI Task Force: ELI implementation methodology. http://data.europa.eu/doi/10.2830/813167
  7. 7.
    Faísca, J.G., Rogado, J.Q.: Decentralized semantic identity. In: Proceedings of the 12th International Conference on Semantic Systems, pp. 177–180. ACM (2016)Google Scholar
  8. 8.
    Sutton, A., Samavi, R.: Blockchain enabled privacy audit logs. In: d’Amato, C., Fernandez, M., Tamma, V., Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 645–660. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68288-4_38CrossRefGoogle Scholar
  9. 9.
    English, M., Auer, S., Domingue, J.: Block chain technologies & the semantic web: a framework for symbiotic development. In: Lehmann, J., Thakkar, H., Halilaj, L., Asmat, R. (eds) Computer Science Conference for University of Bonn Students, pp. 47–61 (2016)Google Scholar
  10. 10.
    Berners-Lee, T.: 5 star deployment scheme. https://www.w3.org/DesignIssues/LinkedData.html
  11. 11.
    Archer, P., Goedertier, S., Loutas, N.: Study on persistent URIs, with identification of best practices and recommendations on the topic for the MSs and the EC (2012). https://joinup.ec.europa.eu/sites/default/files/document/2013-02/D7.1.3-StudyonpersistentURIs.pdf
  12. 12.
    Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)Google Scholar
  13. 13.
    Bitcoin Wiki: Script Manual. https://en.bitcoin.it/wiki/Script
  14. 14.
    Bartoletti, M., Pompianu, L.: An analysis of Bitcoin OP_RETURN metadata. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 218–230. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70278-0_14CrossRefGoogle Scholar
  15. 15.
    Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_10CrossRefGoogle Scholar
  16. 16.
    de Pedro Crespo, A.S., García, L.I.C.: Stampery Blockchain Timestamping Architecture (BTA) - Version 6. CoRR (2017)Google Scholar
  17. 17.
    Gutoski, G., Stebila, D.: Hierarchical deterministic Bitcoin wallets that tolerate key leakage. IACR Cryptology ePrint Archive: Report 2014/998 (2014)Google Scholar
  18. 18.
    Palatinus, M., Rusnak, P.: Multi-Account Hierarchy for Deterministic Wallets. https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
  19. 19.
    Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Binary RDF representation for publication and exchange (HDT). Web Semant.: Sci. Serv. Agents World Wide Web 19, 22–41 (2013)CrossRefGoogle Scholar
  20. 20.
    Sporny, M.: LD-DL’17 workshop keynote talk: building better blockchains via linked data. In: Proceedings of the 26th International Conference on World Wide Web, p. 1429. ACM (2017)Google Scholar
  21. 21.
    Buterin, V.: A Next-Generation Smart Contract and Decentralized Application Platform. https://github.com/ethereum/wiki/wiki/White-Paper

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Informatics and TelecommunicationsNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations