Advertisement

Task-Oriented Complex Ontology Alignment: Two Alignment Evaluation Sets

  • Élodie Thiéblin
  • Ollivier Haemmerlé
  • Nathalie Hernandez
  • Cassia Trojahn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10843)

Abstract

Simple ontology alignments, largely studied, link one entity of a source ontology to one entity of a target ontology. One of the limitations of these alignments is, however, their lack of expressiveness which can be overcome by complex alignments. Although different complex matching approaches have emerged in the literature, there is a lack of complex reference alignments on which these approaches can be systematically evaluated. This paper proposes two sets of complex alignments between 10 pairs of ontologies from the well-known OAEI conference simple alignment dataset.

The methodology for creating the alignment sets is described and takes into account the use of the alignments for two tasks: ontology merging and query rewriting. The ontology merging alignment set contains 313 correspondences and the query rewriting one 431. We report an evaluation of state-of-the art complex matchers on the proposed alignment sets.

References

  1. 1.
    Abacha, A.B., Zweigenbaum, P.: Means: une approche sémantique pour la recherche de réponses aux questions médicales. TAL 55(1), 71–104 (2014)Google Scholar
  2. 2.
    Achichi, M., Cheatham, M., Dragisic, Z., Euzenat, J., Faria, D., Ferrara, A., Flouris, G., Fundulaki, I., Harrow, I., Ivanova, V., et al.: Results of the ontology alignment evaluation initiative 2017. In: 12th ISWC workshop on ontology matching, OM 2017, Wien, Austria, pp. 61–113 October 2017Google Scholar
  3. 3.
    Cheatham, M., Hitzler, P.: Conference v2.0: an uncertain version of the OAEI conference benchmark. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 33–48. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11915-1_3CrossRefGoogle Scholar
  4. 4.
    Correndo, G., Shadbolt, N.: Translating expressive ontology mappings into rewriting rules to implement query rewriting. In: 6th Workshop on Ontology Matching (2011)Google Scholar
  5. 5.
    David, J., Euzenat, J., Scharffe, F., Trojahn dos Santos, C.: The alignment API 4.0. Semant. Web 2(1), 3–10 (2011)Google Scholar
  6. 6.
    Do, H.-H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In: Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe 2002. LNCS, vol. 2593, pp. 221–237. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36560-5_17CrossRefGoogle Scholar
  7. 7.
    Euzenat, J.: Semantic precision and recall for ontology alignment evaluation. In: IJCAI (2007)Google Scholar
  8. 8.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38721-0CrossRefzbMATHGoogle Scholar
  9. 9.
    Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2 reasoner. J. Autom. Reason. 53(3), 245–269 (2014)CrossRefGoogle Scholar
  10. 10.
    Hollink, L., van Assem, M., Wang, S., Isaac, A., Schreiber, G.: Two variations on ontology alignment evaluation: methodological issues. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 388–401. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68234-9_30CrossRefGoogle Scholar
  11. 11.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. Kr 6, 57–67 (2006)Google Scholar
  12. 12.
    Isaac, A., Matthezing, H., van der Meij, L., Schlobach, S., Wang, S., Zinn, C.: Putting ontology alignment in context: usage scenarios, deployment and evaluation in a library case. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 402–417. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68234-9_31CrossRefGoogle Scholar
  13. 13.
    Jiang, S., Lowd, D., Kafle, S., Dou, D.: Ontology matching with knowledge rules. In: Hameurlain, A., Küng, J., Wagner, R., Chen, Q. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXVIII. LNCS, vol. 9940, pp. 75–95. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53455-7_4CrossRefGoogle Scholar
  14. 14.
    Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Ontology integration using mappings: towards getting the right logical consequences. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 173–187. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02121-3_16CrossRefGoogle Scholar
  15. 15.
    Maedche, A., Motik, B., Silva, N., Volz, R.: MAFRA—a MApping FRAmework for distributed ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 235–250. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45810-7_23CrossRefzbMATHGoogle Scholar
  16. 16.
    Makris, K., Bikakis, N., Gioldasis, N., Christodoulakis, S.: SPARQL-RW: transparent query access over mapped RDF data sources. In: 15th International Conference on Extending Database Technology, pp. 610–613. ACM (2012)Google Scholar
  17. 17.
    Meilicke, C., Stuckenschmidt, H.: Incoherence as a basis for measuring the quality of ontology mappings. In: 3rd International Conference on Ontology Matching, vol. 431, pp. 1–12 (2008)Google Scholar
  18. 18.
    Nunes, B.P., Mera, A., Casanova, M.A., Breitman, K.K., Leme, L.A.P.: Complex matching of RDF datatype properties. In: 6th ISWC Workshop on Ontology Matching(2011)Google Scholar
  19. 19.
    Oliveira, D., Pesquita, C.: Improving the interoperability of biomedical ontologies with compound alignments. J. Biomed. Semant. 9(1) (2018)Google Scholar
  20. 20.
    Parundekar, R., Knoblock, C.A., Ambite, J.L.: Linking and building ontologies of linked data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 598–614. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17746-0_38CrossRefGoogle Scholar
  21. 21.
    Parundekar, R., Knoblock, C.A., Ambite, J.L.: Discovering concept coverings in ontologies of linked data sources. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 427–443. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35176-1_27CrossRefGoogle Scholar
  22. 22.
    Qin, H., Dou, D., LePendu, P.: Discovering executable semantic mappings between ontologies. In: Meersman, R., Tari, Z. (eds.) OTM 2007. LNCS, vol. 4803, pp. 832–849. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76848-7_56CrossRefGoogle Scholar
  23. 23.
    Ritze, D., Meilicke, C., Šváb Zamazal, O., Stuckenschmidt, H.: A pattern-based ontology matching approach for detecting complex correspondences. In: 4th ISWC Workshop on Ontology Matching, pp. 25–36 (2009)Google Scholar
  24. 24.
    Ritze, D., Völker, J., Meilicke, C., Šváb Zamazal, O.: Linguistic analysis for complex ontology matching. In: 5th Workshop on Ontology Matching, pp. 1–12 (2010)Google Scholar
  25. 25.
    Scharffe, F.: Correspondence patterns representation. Ph.D. thesis, Faculty of Mathematics, Computer Science and University of Innsbruck (2009)Google Scholar
  26. 26.
    Serpeloni, F., Moraes, R., Bonacin, R.: Ontology mapping validation. Int. J. Web Portals 3(3), 1–11 (2011)CrossRefGoogle Scholar
  27. 27.
    Solimando, A., Jiménez-Ruiz, E., Guerrini, G.: Minimizing conservativity violations in ontology alignments: algorithms and evaluation. Knowl. Inf. Syst. 51(3), 775–819 (2017)CrossRefGoogle Scholar
  28. 28.
    Solimando, A., Jiménez-Ruiz, E., Pinkel, C.: Evaluating ontology alignment systems in query answering tasks. In: ISWC 2014 International Conference on Posters and Demonstrations, pp. 301–304 (2014)Google Scholar
  29. 29.
    Stapleton, G., Howse, J., Bonnington, A., Burton, J.: A vision for diagrammatic ontology engineering. In: International Workshop on Visualizations and User Interfaces for Knowledge Engineering and Linked Data Analytics, pp. 1–13 (2014)Google Scholar
  30. 30.
    Thiéblin, É., Amarger, F., Haemmerlé, O., Hernandez, N., Trojahn, C.: Rewriting SELECT SPARQL queries from 1:n complex correspondences. In: 11th ISWC Workshop on Ontology Matching, pp. 49–60 (2016)Google Scholar
  31. 31.
    Thiéblin, É., Haemmerlé, O., Hernandez, N., Trojahn, C.: Un jeu de données d’é valuation de correspondances complexes entre ontologies. In: 28es Journées francophones d’Ingénierie des Connaissances IC 2017, pp. 68–79 (2017)Google Scholar
  32. 32.
    Thiéblin, É., Amarger, F., Hernandez, N., Roussey, C., Trojahn dos Santos, C.: Cross-querying LOD datasets using complex alignments: an application to agronomic taxa. In: Garoufallou, E., Virkus, S., Siatri, R., Koutsomiha, D. (eds.) MTSR 2017. CCIS, vol. 755, pp. 25–37. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70863-8_3CrossRefGoogle Scholar
  33. 33.
    Thiéblin, É., Haemmerlé, O., Hernandez, N., Trojahn, C.: Towards a complex alignment evaluation dataset (poster). In: 12th ISWC Workshop on Ontology Matching, pp. 217–218 (2017)Google Scholar
  34. 34.
    Šváb, O., Svátek, V., Berka, P., Rak, D., Tomášek, P.: Ontofarm: towards an experimental collection of parallel ontologies. In: Poster Track of ISWC 2005 (2005)Google Scholar
  35. 35.
    Visser, P.R., Jones, D.M., Bench-Capon, T.J., Shave, M.: An analysis of ontology mismatches; heterogeneity versus interoperability. In: AAAI 1997 Spring Symposium on Ontological Engineering, Stanford, CA, USA, pp. 164–72 (1997)Google Scholar
  36. 36.
    Walshe, B., Brennan, R., O’Sullivan, D.: Bayes-ReCCE: a Bayesian model for detecting restriction class correspondences in linked open data knowledge bases. Int. J. Semant. Web Inf. Syst. (IJSWIS) 12(2), 25–52 (2016)CrossRefGoogle Scholar
  37. 37.
    Zamazal, O., Svátek, V.: The ten-year ontofarm and its fertilization within the onto-sphere. Web Semant.: Sci. Serv. Agents World Wide Web 43, 46–53 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Recherche Informatique de ToulouseToulouseFrance

Personalised recommendations