Advertisement

Transfer Learning for Item Recommendations and Knowledge Graph Completion in Item Related Domains via a Co-Factorization Model

  • Guangyuan Piao
  • John G. Breslin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10843)

Abstract

With the popularity of Knowledge Graphs (KGs) in recent years, there have been many studies that leverage the abundant background knowledge available in KGs for the task of item recommendations. However, little attention has been paid to the incompleteness of KGs when leveraging knowledge from them. In addition, previous studies have mainly focused on exploiting knowledge from a KG for item recommendations, and it is unclear whether we can exploit the knowledge in the other way, i.e, whether user-item interaction histories can be used for improving the performance of completing the KG with regard to the domain of items. In this paper, we investigate the effect of knowledge transfer between two tasks: (1) item recommendations, and (2) KG completion, via a co-factorization model (CoFM) which can be seen as a transfer learning model. We evaluate CoFM by comparing it to three competitive baseline methods for each task. Results indicate that considering the incompleteness of a KG outperforms a state-of-the-art factorization method leveraging existing knowledge from the KG, and performs better than other baselines. In addition, the results show that exploiting user-item interaction histories also improves the performance of completing the KG with regard to the domain of items, which has not been investigated before.

Notes

Acknowledgments

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289 (Insight Centre for Data Analytics).

References

  1. 1.
    Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)Google Scholar
  2. 2.
    Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data, pp. 2787–2795 (2013)Google Scholar
  3. 3.
    Di Noia, T., Cantador, I., Ostuni, V.C.: Linked open data-enabled recommender systems: ESWC 2014 challenge on book recommendation. In: Presutti, V., Stankovic, M., Cambria, E., Cantador, I., Di Iorio, A., Di Noia, T., Lange, C., Reforgiato Recupero, D., Tordai, A. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 129–143. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12024-9_17CrossRefGoogle Scholar
  4. 4.
    Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D.: Exploiting the web of data in model-based recommender systems. In: Proceedings of the 6th ACM Conference on Recommender Systems, pp. 253–256. ACM (2012)Google Scholar
  5. 5.
    Dong, X.L., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: The 20th SIGKDD, pp. 601–610. ACM (2014)Google Scholar
  6. 6.
    Drumond, L., Rendle, S., Schmidt-Thieme, L.: Predicting RDF triples in incomplete knowledge bases with tensor factorization. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing, pp. 326–331. ACM (2012)Google Scholar
  7. 7.
    Figueroa, C., Vagliano, I., Rodríguez Rocha, O., Morisio, M.: A systematic literature review of linked data-based recommender systems. Concurrency Computation 27, 4659–4684 (2015)CrossRefGoogle Scholar
  8. 8.
    Franz, T., Schultz, A., Sizov, S., Staab, S.: TripleRank: ranking semantic web data by tensor decomposition. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 213–228. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04930-9_14CrossRefGoogle Scholar
  9. 9.
    Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting completeness in knowledge bases. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 375–383. ACM (2017)Google Scholar
  10. 10.
    de Gemmis, M., Lops, P., Musto, C., Narducci, F., Semeraro, G.: Semantics-aware content-based recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 119–159. Springer, Boston (2015).  https://doi.org/10.1007/978-1-4899-7637-6_4CrossRefGoogle Scholar
  11. 11.
    Guo, S., Wang, Q., Wang, B., Wang, L., Guo, L.: Semantically smooth knowledge graph embedding. In: ACL, vol. 1, pp. 84–94 (2015)Google Scholar
  12. 12.
    Heitmann, B.: An open framework for multi-source, cross-domain personalisation with semantic interest graphs. In: Proceedings of the Sixth ACM Conference on Recommender systems, pp. 313–316. ACM (2012)Google Scholar
  13. 13.
    Heitmann, B., Hayes, C.: Using linked data to build open, collaborative recommender systems. In: AAAI Spring Symposium, pp. 76–81. AAAI (2010)Google Scholar
  14. 14.
    Ji, G., Liu, K., He, S., Zhao, J.: Knowledge graph completion with adaptive sparse transfer matrix. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)Google Scholar
  15. 15.
    Kapanipathi, P., Jain, P., Venkataramani, C., Sheth, A.: User interests identification on Twitter using a hierarchical knowledge base. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 99–113. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07443-6_8CrossRefGoogle Scholar
  16. 16.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S.: DBpedia-a Large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web J. 1, 1–5 (2013)Google Scholar
  17. 17.
    Lu, C., Stankovic, M., Radulovic, F., Laublet, P.: Crowdsourced affinity: a matter of fact or experience. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 554–570. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58068-5_34CrossRefGoogle Scholar
  18. 18.
    Musto, C., Lops, P., Basile, P., de Gemmis, M., Semeraro, G.: Semantics-aware graph-based recommender systems exploiting linked open data. In: Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization, pp. 229–237. ACM (2016)Google Scholar
  19. 19.
    Musto, C., Narducci, F., Lops, P., De Gemmis, M., Semeraro, G.: ExpLOD: a framework for explaining recommendations based on the linked open data cloud. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 151–154. RecSys 2016. ACM, New York (2016)Google Scholar
  20. 20.
    Musto, C., Semeraro, G., de Gemmis, M., Lops, P.: Tuning personalized pagerank for semantics-aware recommendations based on linked open data. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 169–183. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58068-5_11CrossRefGoogle Scholar
  21. 21.
    Nguyen, P., Tomeo, P., Di Noia, T., Di Sciascio, E.: An evaluation of SimRank and personalized PageRank to build a recommender system for the web of data. In: Proceedings of the 24th WWW, pp. 1477–1482. ACM (2015)Google Scholar
  22. 22.
    Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)CrossRefGoogle Scholar
  23. 23.
    Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing yago: scalable machine learning for linked data. In: Proceedings of the 21st International Conference on World Wide Web, pp. 271–280. ACM (2012)Google Scholar
  24. 24.
    Noia, T.D., Ostuni, V.C., Tomeo, P., Sciascio, E.D.: Sprank: semantic path-based ranking for top-n recommendations using linked open data. ACM Trans. Intell. Syst. Technol. (TIST) 8(1), 9 (2016)Google Scholar
  25. 25.
    Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)CrossRefGoogle Scholar
  26. 26.
    Passant, A.: dbrec — music recommendations using DBpedia. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17749-1_14CrossRefGoogle Scholar
  27. 27.
    Piao, G., Breslin, J.G.: Measuring semantic distance for linked open data-enabled recommender systems. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 315–320. ACM, Pisa (2016)Google Scholar
  28. 28.
    Piao, G., Breslin, J.G.: Factorization machines leveraging lightweight linked open data-enabled features for top-N recommendations. In: Bouguettaya, A., Gao, Y., Klimenko, A., Chen, L., Zhang, X., Dzerzhinskiy, F., Jia, W., Klimenko, S.V., Li, Q. (eds.) WISE 2017. LNCS, vol. 10570, pp. 420–434. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68786-5_33CrossRefGoogle Scholar
  29. 29.
    Rendle, S.: Factorization machines with libFM. ACM Trans. Intell. Syst. Technol. 3(3), 57:1–57:22 (2012)CrossRefGoogle Scholar
  30. 30.
    Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press (2009)Google Scholar
  31. 31.
    Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag recommendation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 81–90. ACM (2010)Google Scholar
  32. 32.
    Sheth, A., Perera, S., Wijeratne, S., Thirunarayan, K.: Knowledge will propel machine understanding of content: extrapolating from current examples. In: 2017 IEEE/WIC/ACM International Conference on Web Intelligence. ACM (2017)Google Scholar
  33. 33.
    Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)CrossRefGoogle Scholar
  34. 34.
    Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)Google Scholar
  35. 35.
    Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 353–362. ACM, New York (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Insight Centre for Data Analytics, Data Science InstituteNational University of Ireland GalwayGalwayIreland

Personalised recommendations