GDPRtEXT - GDPR as a Linked Data Resource

  • Harshvardhan J. PanditEmail author
  • Kaniz Fatema
  • Declan O’Sullivan
  • Dave Lewis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10843)


The General Data Protection Regulation (GDPR) is the new European data protection law whose compliance affects organisations in several aspects related to the use of consent and personal data. With emerging research and innovation in data management solutions claiming assistance with various provisions of the GDPR, the task of comparing the degree and scope of such solutions is a challenge without a way to consolidate them. With GDPR as a linked data resource, it is possible to link together information and approaches addressing specific articles and thereby compare them. Organisations can take advantage of this by linking queries and results directly to the relevant text, thereby making it possible to record and measure their solutions for compliance towards specific obligations. GDPR text extensions (GDPRtEXT) uses the European Legislation Identifier (ELI) ontology published by the European Publications Office for exposing the GDPR as linked data. The dataset is published using DCAT and includes an online webpage with HTML id attributes for each article and its subpoints. A SKOS vocabulary is provided that links concepts with the relevant text in GDPR. To demonstrate how related legislations can be linked to highlight changes between them for reusing existing approaches, we provide a mapping from Data Protection Directive (DPD), which was the previous data protection law, to GDPR showing the nature of changes between the two legislations. We also discuss in brief the existing corpora of research that can benefit from the adoption of this resource.


GDPR DPD Linked resource Regulatory technology Legal compliance SKOS DCAT e-governance 



This paper is supported by the ADAPT Centre for Digital Content Technology, which is funded under the SFI Research Centres Programme (Grant 13/RC/2106) and is co-funded under the European Regional Development Fund.


  1. 1.
    Agarwal, S., Kirrane, S., Scharf, J.: Modelling the general data protection regulation. In: Internationales Rechtsinformatik Symposion (IRIS 2017) (2017)Google Scholar
  2. 2.
    Bartolini, C., Muthuri, R.: Reconciling data protection rights and obligations: an ontology of the forthcoming EU regulation (2015)Google Scholar
  3. 3.
    Bartolini, C., Muthuri, R., Cristiana, S.: Using ontologies to model data protection requirements in workflows. In: Ninth International Workshop on Juris-Informatics (JURISIN 2015) (2015).
  4. 4.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. In: Semantic Services, Interoperability and Web Applications: Emerging Concepts, pp. 205–227 (2009)Google Scholar
  5. 5.
    Bonatti, P., Kirrane, S., Polleres, A., Wenning, R.: Transparent personal data processing: the road ahead. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10489, pp. 337–349. Springer, Cham (2017). Scholar
  6. 6.
    Chassang, G.: The impact of the EU general data protection regulation on scientific research. ecancermedicalscience 11, 709 (2017)CrossRefGoogle Scholar
  7. 7.
    Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). Official J. Eur. Union L119, 1–88 (2016).
  8. 8.
    Fatema, K., Chadwick, D.W., Van Alsenoy, B.: Extracting access control and conflict resolution policies from european data protection law. In: Camenisch, J., Crispo, B., Fischer-Hübner, S., Leenes, R., Russello, G. (eds.) Privacy and Identity 2011. IAICT, vol. 375, pp. 59–72. Springer, Heidelberg (2012). Scholar
  9. 9.
    Fatema, K., Debruyne, C., Lewis, D., OSullivan, D., Morrison, J.P., Mazed, A.A.: A semi-automated methodology for extracting access control rules from the European data protection directive. In: 2016 IEEE Security and Privacy Workshops (SPW), pp. 25–32. IEEE (2016)Google Scholar
  10. 10.
    Fatema, K., Hadziselimovic, E., Pandit, H.J., Debruyne, C., Lewis, D., O’Sullivan, D.: Compliance through informed consent: semantic based consent permission and data management model. In: 5th Workshop on Society, Privacy and the Semantic Web - Policy and Technology (PrivOn 2017). CEUR Workshop Proceedings, vol. 1951 (2017).
  11. 11.
    Gangemi, A., Prisco, A., Sagri, M.-T., Steve, G., Tiscornia, D.: Some ontological tools to support legal regulatory compliance, with a case study. In: Meersman, R., Tari, Z. (eds.) OTM 2003. LNCS, vol. 2889, pp. 607–620. Springer, Heidelberg (2003). Scholar
  12. 12.
    Garijo, D.: WIDOCO: a wizard for documenting ontologies. In: d’Amato, C., Fernandez, M., Tamma, V., Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 94–102. Springer, Cham (2017). Scholar
  13. 13.
    Hadziselimovic, E., Fatema, K., Pandit, H.J., Lewis, D.: Linked data contracts to support data protection and data ethics in the sharing of scientific data. In: Proceedings of the First Workshop on Enabling Open Semantic Science (SemSci). CEUR Workshop Proceedings, vol. 1931, pp. 55–62 (2017).
  14. 14.
    Hoekstra, R., Breuker, J., Di Bello, M., Boer, A., et al.: The LKIF core ontology of basic legal concepts. LOAIT 321, 43–63 (2007)Google Scholar
  15. 15.
    Lewis, D., Moorkens, J., Fatema, K.: Integrating the management of personal data protection and open science with research ethics. In: Ethics in NLP Workshop, EACL, pp. 60–65 (2017)Google Scholar
  16. 16.
    Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: web-based visualization of ontologies. In: Lambrix, P., Hyvönen, E., Blomqvist, E., Presutti, V., Qi, G., Sattler, U., Ding, Y., Ghidini, C. (eds.) EKAW 2014. LNCS (LNAI), vol. 8982, pp. 154–158. Springer, Cham (2015). Scholar
  17. 17.
    Mommers, L.: A knowledge-based ontology of the legal domain. In: Second International Workshop on Legal Ontologies, JURIX (2001)Google Scholar
  18. 18.
    Noy, N.F., McGuinness, D.L., et al.: Ontology development 101: a guide to creating your first ontology (2001)Google Scholar
  19. 19.
    Pandit, H.J., Lewis, D.: Modelling provenance for gdpr compliance using linked open data vocabularies. In: 5th Workshop on Society, Privacy and the Semantic Web - Policy and Technology (PrivOn 2017). CEUR Workshop Proceedings, vol. 1951 (2017).
  20. 20.
    Peroni, S., Shotton, D., Vitali, F.: The live OWL documentation environment: a tool for the automatic generation of ontology documentation. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 398–412. Springer, Heidelberg (2012). Scholar
  21. 21.
    Steyskal, S., Kirrane, S.: If you can’t enforce it, contract it: enforceability in policy-driven (linked) data markets. In: SEMANTiCS (Posters and Demos), pp. 63–66 (2015)Google Scholar
  22. 22.
    Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E., et al.: The fair guiding principles for scientific data management and stewardship. Scientific data 3 (2016). Artical no. 160018CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ADAPT CentreTrinity College DublinDublinIreland
  2. 2.University of DerbyDerbyUnited Kingdom

Personalised recommendations