Advertisement

Efficient Temporal Reasoning on Streams of Events with DOTR

  • Alessandro Margara
  • Gianpaolo Cugola
  • Dario Collavini
  • Daniele Dell’Aglio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10843)

Abstract

Many ICT applications need to make sense of large volumes of streaming data to detect situations of interest and enable timely reactions. Stream Reasoning (SR) aims to combine the performance of stream/event processing and the reasoning expressiveness of knowledge representation systems by adopting Semantic Web standards to encode streaming elements. We argue that the mainstream SR model is not flexible enough to properly express the temporal relations common in many applications. We show that the model can miss relevant information and lead to inconsistent derivations. Moving from these premises, we introduce a novel SR model that provides expressive ontological and temporal reasoning by neatly decoupling their scope to avoid losses and inconsistencies. We implement the model in the DOTR system that defines ontological reasoning using Datalog rules and temporal reasoning using a Complex Event Processing language that builds on metric temporal logic. We demonstrate the expressiveness of our model through examples and benchmarks, and we show that DOTR outperforms state-of-the-art SR tools, processing data with millisecond latency.

References

  1. 1.
    Ali, M.I., Gao, F., Mileo, A.: CityBench: a configurable benchmark to evaluate RSP engines using smart city datasets. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 374–389. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25010-6_25CrossRefGoogle Scholar
  2. 2.
    Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language for event processing and stream reasoning. In: International Conference on World Wide Web, WWW (2011)Google Scholar
  3. 3.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Symposium on Principles of Database Systems, PODS (2002)Google Scholar
  4. 4.
    Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Incremental reasoning on streams and rich background knowledge. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 1–15. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13486-9_1CrossRefGoogle Scholar
  5. 5.
    Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying RDF streams with C-SPARQL. SIGMOD Rec. 39(1), 20–26 (2010)CrossRefGoogle Scholar
  6. 6.
    Bazoobandi, H.R., Beck, H., Urbani, J.: Expressive stream reasoning with laser. In: d’Amato, C., Fernandez, M., Tamma, V., Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 87–103. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68288-4_6CrossRefGoogle Scholar
  7. 7.
    Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: a logic-based framework for analyzing reasoning over streams. In: Conference on AI, AAAI (2015)Google Scholar
  8. 8.
    Calbimonte, J.P., Jeung, H., Corcho, O., Aberer, K.: Enabling query technologies for the semantic sensor web. Int. J. Sem. Web Inf. Sys. 8(1), 43–63 (2012)CrossRefGoogle Scholar
  9. 9.
    Cugola, G., Margara, A.: TESLA: a formally defined event specification language. In: International Conference on Distributed Event-Based Systems, DEBS (2010)Google Scholar
  10. 10.
    Cugola, G., Margara, A.: Complex event processing with T-REX. J. Sys. Softw. 85(8), 1709–1728 (2012)CrossRefGoogle Scholar
  11. 11.
    Cugola, G., Margara, A.: Processing flows of information: from data stream to complex event processing. ACM Comput. Surv. 44(3), 15 (2012)CrossRefGoogle Scholar
  12. 12.
    Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning: a survey and outlook. Data Sci. 1, 59–83 (2017)Google Scholar
  13. 13.
    Eiter, T., Parreira, J.X., Schneider, P.: Spatial ontology-mediated query answering over mobility streams. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 219–237. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58068-5_14CrossRefGoogle Scholar
  14. 14.
    Etzion, O., Niblett, P.: Event Processing in Action. Manning, Shelter Island (2010)Google Scholar
  15. 15.
    Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing time into RDF. Trans. Knowl. Data Eng. 19(2) (2007)CrossRefGoogle Scholar
  16. 16.
    Kazakov, Y., Klinov, P.: Incremental reasoning in OWL EL without bookkeeping. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 232–247. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41335-3_15CrossRefGoogle Scholar
  17. 17.
    Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25073-6_24CrossRefGoogle Scholar
  18. 18.
    Margara, A., Dell’Aglio, D., Bernstein, A.: Break the windows: explicit state management for stream processing systems. In: International Conference on Extending Database Technology, EDBT (2017)Google Scholar
  19. 19.
    Margara, A., Urbani, J., van Harmelen, F., Bal, H.: Streaming the web: reasoning over dynamic data. Web Semant. 25(1), 24–44 (2014)CrossRefGoogle Scholar
  20. 20.
    Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Combining rewriting and incremental materialisation maintenance for datalog programs with equality. In: Conference on AI, IJCAI (2015)Google Scholar
  21. 21.
    Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-scalable RDF store. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 3–20. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25010-6_1CrossRefGoogle Scholar
  22. 22.
    Pham, T.L., Mileo, A., Ali, M.I.: Towards scalable non-monotonic stream reasoning via input dependency analysis. In: International Conference on Data Engineering, ICDE (2017)Google Scholar
  23. 23.
    Rinne, M., Nuutila, E.: Constructing event processing systems of layered and heterogeneous events with SPARQL. J. Data Semant. 6(2), 57–69 (2017)CrossRefGoogle Scholar
  24. 24.
    Tappolet, J., Bernstein, A.: Applied temporal RDF: efficient temporal querying of RDF data with SPARQL. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 308–322. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02121-3_25CrossRefGoogle Scholar
  25. 25.
    Urbani, J., Margara, A., Jacobs, C., van Harmelen, F., Bal, H.: DynamiTE: parallel materialization of dynamic RDF data. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 657–672. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41335-3_41CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DEIBPolitecnico di MilanoMilanItaly
  2. 2.IFIUniversity of ZurichZurichSwitzerland

Personalised recommendations